Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Потери механической энергии потока при переходе потока

О влиянии скругления колен на потери механической энергии потока в каналах. Потери при переходе потока из одной плоскости в другую в многослойных приборах, построенных на струйных элементах. При построении элементов и устройств пневмоники возникает задача определения практически целесообразных радиусов скругления колен в каналах.  [c.356]

С точки зрения изложенной только что теории становится ясной причина указанного еще в гл. IV возрастания в скачке уплотнения энтропии. Прирост энтропии служит указанием на наличие в области перехода сверхзвукового потока в дозвуковой потерь механической энергии, превращающейся за счет внутреннего трения в тепло. Общая формула диссипируемой в тепло энергии при движении вязкого сжимаемого газа будет выведена в следующем параграфе.  [c.515]


При передаче механической энергии через поток жидкости часть удельной энергии hy, рассеивается в рабочей полости гидропередачи, переходя в тепло. Рассеивание энергии — основной недостаток гидродинамических передач. Однако потери энергии в современных гидродинамических передачах снижены настолько, что коэффициент полезного действия гидромуфт достигает 96%, а гидротрансформаторов — 90%. В специальных комплексных гидромеханических трансмиссиях, составленных из гидротрансформатора и планетарного дифференциала, общий к. п. д. достигает 95%.  [c.296]

При перекачивании перегретых паров трубопроводы самым тщательным образом изолируют, и их тепловые потери незначительны, но все же характер изменения состояния перегретого пара в результате устранения теплообмена между потоком и наружной средой уже не является изотермическим. Не будет он и строго адиабатическим— даже в хорошо изолированной трубе условия будут отличаться от условий при обратимом адиабатическом изменении объема, так как турбулентность, возникающая при движении, переходит частично в тепло, которое изменяет уравнение энергии (энергия, переходящая в потери, возвращается в виде механической энергии). Таким образом, с одной стороны, температура пара имеет тенденцию к снижению по длине трубопровода в результате расширения пара, с другой стороны, — к возрастанию вследствие поступления тепла от потерь напора. В результате режим движения находится между изотермическим и адиабатическим. Поскольку температура пара меняется по длине паропровода, меняются также динамическая вязкость р, число Рейнольдса и в общем случае коэффициент гидравлического трения X. Однако вследствие значительных скоростей движения пара в паропроводах (десятки метров в 1 с) сопротивление относится чаще всего к квадратичной области, где X от Не не зависит.  [c.295]

Удельная теплоемкость используется при определении нагрева масла, вызываемого переходом механической энергии в тепло из-за потерь на трение при дросселировании потока жидкости, сопротивления в каналах гидроаппаратуры,трубопроводах и др.  [c.15]

Рассмотрим еще раз обтекание тела установившимся потоком идеального совершенного газа при наличии адиабатич-ности, но в данном случае предположим, что либо набегающий поток сверхзвуковой, либо в возмущенном потоке вблизи тела образуются сверхзвуковые зоны. В этих случаях обычно возникают скачки уплотнения, и поэтому нельзя пользоваться принятым выше основным допущением о непрерывности движения. При наличии в потоке скачков уплотнения на линиях тока, пересекающих скачок, температура торможения Т по-прежнему сохраняется, а давление торможения р падает, так как при переходе через скачок благодаря росту энтропии появляются необратимые потери, связанные с переходом механической энергии в тепло. Наличие этих потерь в скачках, характеризующихся убыванием давления торможения, влечет за собой появление сопротивления при обтекании тел газом.  [c.78]


Часть полной 3Hq)rHH, идущая на преодоление сил гидравлического сопротивления, возникающих при движении реальной (вязкой) жидкости (газа) по трубам и каналам, теряется для данной системы (сети) безвозвратно. Эта потеря энергии обусловлена необратимым переходом механической энергии (работы сил сопротивления) в теплоту. Поэтому под гидравлическим сопротивлением или гидравлическими потерями подразумевается величина, равная безвозвратной потере полной энергии на данном участке. Отношение потерянной полной энергии (мощности) потока к кинетической энергии (мощности) или потерянного полного давления, осредненного по массовому расходу, к динамическому давлению в условленном сечении называют коэффициентом гидравлического сопротивления .  [c.10]

При работе аэродинамических труб по замкнутому циклу полное давление воздуха, выходящего из диффузора, необходимо увеличивать в компрессоре (вентиляторе) для восполнения потерь, после чего воздух вновь поступает к входу в сопло. При этом из-за необратимого перехода сообщаемой газу механической энергии в тепловую в трубах достаточно большой мощности требуется установка специальных устройств для отвода тепла от газового потока.  [c.96]

Потери механической энергии потока от трения диска переходят в теплоту, которая подводится к потоку в камере за ступенью, повышая энтальпию пара. Аналогично потери от парцнальности и от влажности пара также переходят в теплоту, которая передается потоку при пониженном давлении. Механизм повышения энтальпии пара за ступенью за счет утечек пара связан со смешением потока протечки с основным потоком, проходящим через лопатки ступени. Энтальпия пара утечек за ступенью равна энтальпии пара основного потока перед ступенью, так как процесс в уплотнениях аналогичен процессу дросселирования. Поэтому в результате смешения протечки с основным потоком за ступенью энтальпия пара за ступенью увеличивается на А Ну. Таким образом, теплота потерь АН , АН , А Ну, АН сообщается потоку пара за ступенью, повышая его энтальпию. Значения АН, , АН , АНу, АН при построении процесса расширения пара в ступени откладываются в Л, -диаграмме на изобаре Р2 (рис. 3.31). Для промежуточной ступени, когда используется энергия выходной скорости в последующей ступени, потери энергии с выходной скоростью  [c.102]

Одна из современных конструкций газодинамического органа управления основана на принципе изменения направления вектора силы тяги основного двигателя путем впрыска жидкости или вдува газа в сопло (рис. 1.9.11,е). Механизм возникновения управляющего усилия состоит в следующем. Поток жидкости или газа, подводимый в сверхзвуковую часть сопла через отверстие 1, взаимодействует со сверхзвуковым потоком газообразных продуктов сгорания топлива и, отклоняясь, от первоначального направления, течет в область 2. При обтекании основным потоком этой области образуется скачок уплотнения 3, за которым происходит поворот потока и, как следствие, повышение давления. В результате возникает управляющее усилие Рр. Изменяя расход жидкости, впрыскиваемой в сопло,можно регулировать величину управляющей силы.Впрыск жидкости через различные отверстия, расположенные по окружности поперечного сечения сопла, позволяет обеспечить необходимое направление этой силы. Особенность рассматриваемого рулевого устройства состоит в том, что возникновение управляющего усилия практически происходит без уменьшения тяги основного двигателя. Объясняется это тем, что снижение тяги вследствие потери механической энергии потока газа при переходе через скачок уплотнения компенсируется ее возрастанием благодаря увеличению массы истекающих газов. Более того, тягу можно несколько увеличить, если в качестве впрыскиваемой жидкости применить окислитель, который, вступая в химическую реакцию с недогоревшим топливом, увеличит полноту сгорания. Достоинством рулевого устройства является отсутствие в нем дополнительных подвижных элементов двигателя или сопла,, что упрощает конструкцию и делает его более надежным в эксплуатации.  [c.86]


Теоретически потери, обусловленные ударом, соответствуют потерям энергии, которые имеют место при резком изменении скорости потока (по направлению или величине, или одновре менно и по направлению, и по величине) вследствие сопротив ления на пути жидкости при переходе с колеса на колесо. Такое сопротивление могут вызвать не только стенки каналов, но и непостоянство проходного сечения вследствие вихреобразова-ния. Энергия, теряемая на удар, не может механически восстанавливаться, так как она превращается в тепло и уносится нагретой жидкостью, а также передается во внешнюю среду металлическим корпусом гидромуфты.  [c.39]

Как указывалось в гл. 7, во многих случаях при прохождении жидкости через конструктивные элементы (рис. 9.1) происходит отрыв потока от стенок, образуются циркуляционные зоны (если жидкость—вода, то эти зоны называются водоворотными) и интенсивное вихреобразо-вание с последующим гашением вихрей в толще потока, в турбулентном потоке усиливаются пульсации скоростей. В результате этих явлений часть удельной энергии (напора) затрачивается на преодоление сопротивлений движению жидкости, возникающих в связи с работой сил трения внутри вязкой жидкости, часть механической энергии переходит в теплоту. При этом местная потеря напора определяется по (7.6)  [c.184]

Течения газа могут быть классифицированы по признаку сообщения или несообщения рассматриваемому потоку извне тепловой или механической энерпт. Различают адиабатические течения, при которых не происходит теплообмена или передачи механической энергии между потоком газа и внешней средой, и иеадиабатические течения, при которых потоку газа сообщается или отбирается от него энергия. Понятия адиабатического и неадиабатического процессов равно относятся к течению идеального и неидеального газа. Процессы изменения состояния идеального газа при адиабатическом его течении называются изэнтропическимн, В данной книге под течением идеального газа во всех случаях имеется в виду течение, для которого можно не учитывать действие сил вязкого трения (см, п. 2). Данное замечание связано с тем, что иногда идеальными газами называют газы, состояние которых точно подчиняется уравнению Клапейрона, отличая их от газов, близких к состоянию конденсации, для которых последнее уравнение заменяется другими уравнениями (например, уравнением Ван-дер-Ваальса). Во избежание недоразумений, имея в виду последнее отличие, лучше называть газы соответственно совершенными и реальными. В связи с определением течения неидеального газа заметим, что наряду с обычным действием си.л вязкого трения могут наблюдаться и другие необратимые потери механической энергии, связанные с ее переходом в тепловую энергию такие потери имеют место, например, в скачках уплотнения, появляющихся при торможении сверхзвуковые потоков (см. 22).  [c.455]

Изменения состояния газа при переходе от одного сечения потока к другому (от одной точки к другой) могут быть самыми различными. В частности, процесс изменения состояния при неизменной температуре называется изотермическим, при неизменном давлении — изобарным, при отсутствии теплообмена между газом и окружающей средой и без потерь механической энергии потока — изоэнтро-пийным. Каждый из перечисленных процессов изменения состояния может быть описан соответствующим уравнением. Используемый в дальнейшем изоэнтропийный процесс изменения состояния газа описывается известным уравнением изоэнтропы  [c.40]


Смотреть страницы где упоминается термин Потери механической энергии потока при переходе потока : [c.120]    [c.274]    [c.118]   
Теория элементов пневмоники (1969) -- [ c.0 ]



ПОИСК



Потери механические

Потери механической энергии

Потери механической энергии потока

Потери энергии

Потери энергии в потоке

Поток энергии

Энергия механическая

Энергия перехода



© 2025 Mash-xxl.info Реклама на сайте