Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Рост кристаллов влияние дислокаций

Известно, что рост кристаллов тесно связан с винтовыми Дис локациями. Однако, как показали исследования кинетики испарения кристалла путем удаления спиральных слоев, высота которых соответствовала вектору Бюргерса порядка 2-10" см [37], можно пренебречь влиянием со стороны энергии деформации решетки в точке выхода на поверхность винтовой дислокации на скорость испарения. Авторы исследования [37] считают, что расстояние между ступенями, порожденными винтовой дислокацией, быстро растет, достигая такой же величины, как и в случае, когда единственным источником моноатомных ступеней является край кристалла. Поэтому на таких дислокациях ямки травления не образуются.  [c.46]


Изучалось также влияние дислокаций на рост монокристаллов и эпитаксиальных пленок. По влиянию дислокаций на кристаллизацию стальных слитков имеются лишь единичные работы. Дислокационный механизм роста кристаллов в стальном слитке должен привлечь особое внимание исследователей, поскольку примесные атомы оказывают огромное влияние на образование и распределение дислокаций.  [c.66]

Задача кинематической дифракции от игольчатого кристалла, обладающего осевой винтовой дислокацией, была разработана Вильсоном [396], который показал, что точки обратной решетки уширяются в диски, перпендикулярные оси дислокаций направление оси было принято совпадающим е осью с. Соответственно ширина таких дисков увеличивалась с ростом Ь /, где Ь — вектор Бюргерса, а I — соответствующий индекс. Максимумы обратной решетки для / = О не подвергались влиянию дислокации. Аналогичные результаты были также получены для чисто краевой и смешанной дислокаций (см. [265]).  [c.405]

При проверке теории дислокаций и исследовании влияния дислокаций прежде использовались косвенные методы обнаружения дислокаций. В частности, для этой цели использовались рентгеновский метод, наблюдение за ростом кристаллов и исследование изменений некоторых свойств кристаллов при пластической деформации. В настоящее время разработаны надежные прямые методы исследования формы и расположения дислокационных линий на поверхности и внутри кристаллов и на границах зерен. В некоторых случаях наблюдают следы выхода дислокации на поверхность образца.  [c.77]

Дислокации приводят к увеличению энергии Гельмгольца и Гиббса кристалла и поэтому могут в принципе оказывать влияние на процесс кристаллизации. Так как дислокации образуются в процессе зарождения и роста кристалла (по-видимому, вследствие значительных температурных градиентов, возникающих при этом), то они влияют также и на размеры зародыша кристаллической фазы.  [c.94]

Теперь рассмотрим вопрос о влиянии термических напряжений на появление дислокаций при росте кристалла. Известно, что термические напряжения могут вызвать пластическую деформацию в кристалле. Действительно, большие разности температур на малых расстояниях вызывают значительные механические напряжения благодаря различному  [c.241]

На свойства металлов большое влияние оказывает их дислокационная структура. Прочность бездислокационных кристаллов (теоретическая прочность) в сотни раз превышает прочность реальных материалов. При плотности дислокаций порядка 10 . .. 10 см , характерной для чистых неупрочненных металлов, сопротивление деформированию наименьшее. При увеличении плотности сверх указанных значений подвижность дислокаций снижается, что воспринимается нами как рост прочности. Эффективными способами повышения плотности дислокаций (и других дефектов) и снижения их подвижности являются легирование, пластическое деформирование (деформационное упрочнение), упрочняющая термическая и химико-термическая обработка.  [c.51]


Чтобы получить картину влияния редкоземельных элементов на качество кристаллов НБС, проводились опыты по выращиванию кристаллов НБС конгруэнтного состава (ж = 0,54) с добавками La, Y и Ти [30]. 1 ристал-лизация проводилась в условиях, близких к оптимальным для получения чистых кристаллов НБС достаточно высокого оптического качества. В результате было установлено, что такие кристаллы имеют тенденцию расти четырехгранными, подвержены растрескиванию и имеют полосы роста. Последнее говорит о том, что компенсации нарушения стехиометрии кристаллов НБС перечисленными выше элементами не происходит. Плотность дислокаций, выявленная методом травления, оказалась много выше, чем в чистых кристаллах НБС, причем в кристаллах, легированных лантаном, картина распределения дислокаций имеет вид параллельных рядов ямок травления. Таким образом, введение редкоземельных элементов в кристаллы НБС в количестве до 1 вес.% не приводит к улучшению качества кристаллов, хотя несколько облегчает условия их роста.  [c.143]

При значительных и заметно анизотропных термических напряжениях дислокации располагаются в плоскостях скольжения и группируются в малоугловые границы. Большое влияние на возникновение МУГ оказывает форма фронта кристаллизации, которая определяется осевыми и радиальными температурными градиентами при выращивании. При выпуклом в расплав фронте кристаллизации рост грани кристалла происходит чаще всего в результате разрастания одного двумерного зародыша, возникающего в наиболее холодной центральной части грани. При вогнутом в кристалл или плоском фронте кристаллизации рост грани может происходить от нескольких одновременно разрастающихся двумерных зародышей. Таким образом, источниками малоугловых границ являются все те же термические напряжения в кристалле и одновременный рост нескольких центров новой фазы. В монокристаллах со структурой типа  [c.243]

В работе [77] показано, что на грани могут выходить несколько винтовых дислокаций и рост кристалла будет зависеть от условий их взаимодействия, которое в свою очередь обусловлено расстоянием между векторами Бюр-герса, активностью и знаком дислокаций, скоростью вращения спирали н радиусом зарождения дислокаций. На рост кристалла влияние оказывают не только чисто винтовые дислокации.  [c.66]

Л аксимальное переохлаждение у некоторых металлов может достигать 300 К и более (А7, ах 0,2Гпл). Дислокации приводят к увеличению свободной энергии кристалла и поэтому могут оказывать влияние на процесс кристаллизации. Так как дислокации образуются в процессе зарождения и роста кристалла (очевидно, вследствие значительных температурных градиентов, а также вследствие напряжений, вызванных примесями), то они оказывают влияние также и на размеры зародыша кристаллической фазы.  [c.391]

В табл. 4 приведены данные [70, с. 164—191] по влиянию малых добавок тхримесей на плотность дислокаций р, средний размер бл<жов мозаики L, максимальный угол мозаичности бтах В моиокристаллах А1, полученные рентгеновским методом. Концентрации исследуемых добавок меньше предела растворимости в твердой фазе при комнатной температуре. Скорость роста кристаллов составляет 8,3- см/с.  [c.72]

Дислокации, ответственные за механические Bofi-ства и поведение металла при пластической деформации, возникают в большом количестве уже при кристаллизации слитка (Я. В. Гречный, К. М. Жак, Э. Н. Погребной [70, с. 241—248 ). Дислокации при росте кристаллов скопляются в основном на границах зерен. Интенсивность перемещения дислокаций в объем зерна зависит от их природы и состояния границ зерен [8 ]. При исследовании железа замечено, что длина пробега краевых дислокаций значительно больше, чем винтовых. В трансформаторной стали относительная скорость винтовых и краевых дислокаций в 25 раз выше у последних. Состояние границ характеризуется скоплением примесей, которые блокируют движение дислокаций. Таким образом, движение дислокаций обусловлено барьерным эффектом границ зерен. Несомненно, на возникновение и распределение дислокаций большое влияние должны оказывать модификаторы, однако этому вопросу посвящено небольшое количество исследований.  [c.73]


Дислокации могут препятствовать движению малоугловых границ или поглощаться ими, что оказывает влияние на возрастание граничного угла и разориенти-ровку границ зерен. Следует отметить, что структура границ резко отличается от структуры приграничных участков зерна. Высказывалось даже малообоснованное предположение (Ф. Вайнбер [80, с. 126—171]), что структура границ с большой разориентировкой подобна структуре жидкости, хотя большеугловые границы зерен имеют кристаллическую структуру дальнего порядка, а жидкость — мгновенную структуру ближнего порядка. Ширина границ зерен в чистых металлах может состоять из одного или нескольких атомных слоев. В сплавах, в зависимости от коэффициента распределения второго компонента, ширина границ достигает значительных размеров, особенно при небольшой скорости роста столбчатых кристаллов. Скопление дислокаций и наличие крупных выделений на границе перехода от одной структурной зоны к другой должно оказывать отрицательное влияние на механические свойства и деформируемость слитка. Применение модификаторов [4] и затравки может способствовать рафинированию расплава и более равномерному распределению дислокаций в слитке.  [c.74]

Равновесные многогранники, у которых скорости роста граней пропорциональны величине удельной свободной поверхностной энергии, практически возникают только на начальных стадиях роста малых кристаллов, для макроскопических кристаллов это возможно лишь при определенных условиях. Формы макроскопических кристаллов являются не статически равновесными формами, а формами роста, т.е. фиксированными стадиями процесса роста (Энгельгардт). В реальных условиях скорости роста различных граней уже не являются характерными и не пропорциональны поверхностным энер-глям. Это особенно относится к росту кристаллов в растворе, так как межфазные энергии для различных граней по-разному зависят от специфической адсорбции на границе раздела (см. 13.7). Термодинамическое условие устойчивости может зависеть также от других осложняющих эффектов, например от влияния дислокаций.  [c.322]

А)] и толстых [>200 нм (>2000 А)] ленточных усов корунда различна [335]. В тонких пластинках наблюдаются осевые дислокации винтовой, краевой и смешанной ориентации. Для толстых кристаллов характерно наличие сложных переплетений дислокаций либо осевых шнуров из нескольких дислокаций. Наблюдались также бездислокационные ленты корунда. Травлением пластинок сапфира можно выявить дислокации, перпендикулярные или наклонные к плоскости базиса. Как правило, на базисных гранях пластпнок А и Лг, протравленных после выращивания, ямки травления не наблюдаются, что свидетельствует об отсутствии дислокаций, выходящих на эти плоскости. Лишь в редких случаях были выявлены дислокации роста. На рис. 167 представлена фотография дефектной пластинки сапфира на ее поверхности, ближе к краям, имеются многочисленные зародыши двумерной кристаллизации в форме гексагональных пирамид. После травления в центральной части пластины видны группы дислокаций, расположенных вдоль оси роста [1120] и проходящих насквозь через весь кристалл под углом к поверхности базиса. Рассмотрение некоторых работ, посвященных исследованию структуры нитевидных кристаллов, показывает, что она недостаточно изучена. Однако можно сформулировать вывод о том, что усы имеют самую совершенную структуру и поверхность, которую удалось получить искусственным путем усы или совсем не содержат дислокаций, или имеют их очень немного. Является ли это результатом влияния масштаба или следствием специфических условий роста, не ясно.  [c.365]

Таким образом, если исходное состояние материала перед термоцик-лированием неупрочненное, то фазовый наклеп быстро развивается в начальных термоциклах. Затем при достаточно высоком упрочнении (достаточно высокой плостности дислокаций) субструктура стабилизируется, а потому прекращается изменение характеристических температур ТИМП. Если же в исходном состоянии сплав существенно упрочнен (дислокационное упрочнение или дисперсионное упрочнение), то дополнительное дислокационное упрочнение при термоциклировании затруднено — в силу повышения дислокационного предела текучести. Повышение плотности дислокаций при ТЦО способствует превращению через промежуточную Л-фазу, действуя аналогично деформационному наклепу. ТЦО после высокотемпературной термомеханической обработки приводит к существенному росту обратимой деформации аустенит-ного ОЭПФ, наведенной ВТМО, в связи с увеличением ориентирующего влияния упругих полей ориентированных кристаллов мартенсита.  [c.384]

Представляют большой интерес результаты исследования влияния примесей на плотность дислокаций в кристаллах, выращенных из расплава. При избирательной кристаллизации кристалл в процессе роста постепенно обогащается примесью, что приводит к увеличению плотности дислокаций. Это явление наблюдали при выращивании кристаллов А1. Д. Е. Овсиенко ссылается на исследование В. А. Тиллера, в котором дан механизм локальной микросег >егац и примеси. Захват примесей растущим кристаллом связан с геометрией грани и происходит неравномерно, в результате чего возникают напряжения из-за различия в па >ам трах решеток.  [c.72]

Э. М. Надгорный [97, с. 151—175] рассмотрел скорость движения изолированных дислокаций в ионных, ковалентных и металлических кристаллах. Скорость перемещения дислокаций меняется в зависимости от способа и длительности нагружения образца. На движение дислокаций оказывает влияние природа их возникновения. Дислокации, возникшие во время роста и охлаждения кристалла, закреплены точечными дефектами, тормозящими их передвижение. Такие дислокации состарены и не принимают участия в скольжении. Дислокации, образовавшиеся под воздействием нагрузок, подвижны.  [c.109]

Структура реальных кристаллов. Вследствие нарушения равновесных условий роста и захвата примесей при кристаллизации, а также под влиянием различного рода внеш. воздействий идеальная структура К. всегда имеет те или иные нарушения. К ним относят точечные дефекты — вакансии, замещения атомов осн. решётки атомами примесей, внедрение в решётку инородных атомов, дислокации и др. (см. Дефекты в кристаллах). Дозируемое введение небольшого числа атомов примеси, замещающих атомы осн. решётки, широко используется в технике для изменения св-в К., напр, введение в кристаллы Ge и Si атомов III и V групп периодич. системы элементов позволяет получать крист, полупроводники с дырочной и электронной электропроводностями. Другие примеры примесных кристаллов — рубин, состоящий из AI2O3 и примеси (0,05%) Сг иттриево-алюминиевый гранат, состоящий из Y3AI5O2 и примеси (до 1%) Nd.  [c.329]



Смотреть страницы где упоминается термин Рост кристаллов влияние дислокаций : [c.634]    [c.408]    [c.123]    [c.8]    [c.244]    [c.185]    [c.597]    [c.586]    [c.89]    [c.319]   
Физико-химическая кристаллография (1972) -- [ c.301 ]



ПОИСК



Дислокации в кристаллах

Дислокации в кристаллах и рост кристаллов

Дислокация

Рост кристалла дислокаций

Рост кристаллита

Рост кристаллов

Рост пор



© 2025 Mash-xxl.info Реклама на сайте