Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пирометр излучения яркостный

Получены формулы для расчета эффективной яркости объекта, показаний пирометров радиационных, яркостных и цветовых при пирометрии объектов, находящихся в присутствии постороннего источника теплового излучения. Соотношения получены для серых, диффузных, невогнутых поверх-  [c.236]

В настоящее время этот последний недостаток бесконтактного измерения частично устраняется применением цветового оптического пирометра вместо яркостного. Были также попытки осуществить бесконтактное измерение температуры металлической ванны по излучению всего рабочего пространства мартеновской печи в момент установившегося теплового равновесия.  [c.379]


Вторая поправка связана с потерями на отражение на линзе 2 (рис. 95). Эти потери, составляющие примерно 10% (если линза непросветленная), приводят к занижению на 1% яркостной температуры, с которой уравнивается температура пламени. Так, если яркостная температура лампы равна 2000 К, то яркостная температура, соответствующая прошедшему через линзу 2 излучению, составляет 1980 К- Потери на линзе можно учесть, если при измерении температуры лампы оптическим пирометром между ними помещать стеклянную пластинку, эквивалентную по потерям линзе 2.  [c.259]

Действие яркостных пирометров основано на использовании зависимости спектральной интенсивности излучения Д (или спектральной яркости Вх) тела от его температуры. На рис. 9.7 представлена зависимость Д (для абсолютно черного тела) от Т для трех значений длины волны в видимом участке спектра. При Я = = 0,65 мкм повышение температуры от 1000 до 2000 К сопровождается возрастанием спектральной интенсивности Д в 6,42-10 раза. Аналогичные зависимости наблюдаются и для реальных тел.  [c.184]

Яркостные пирометры, используемые в видимой части спектра излучения, с регистрацией сигнала при помощи глаза наблюдателя, т. е. субъективно, называются оптическими.  [c.184]

Ввиду того что энергия, излучаемая реальными телами, меньше энергии излучения абсолютно черного тела, при измерении действительной температуры тела Тд пирометры, основанные на яркостном методе, покажут более низкую яркостную температуру (рис. 9.8). Под яркостной температурой Тд понимается такая условная температура, при которой абсолютно черное тело имеет такую же спектральную интенсивность излучения Д или яркость Вх , что и реальное тело при его действительной температуре Тд, т. е.  [c.184]

Для измерения яркостной температуры в видимой части спектра широко используются оптические пирометры с исчезающей нитью переменного и постоянного накала. Яркостная температура тела измеряется путем сравнения спектральной интенсивности излучения объекта измерения с интенсивностью излучения нити пирометрической лампы при одной и той же эффективной длине волны Хэ -При этом яркостная температура нити лампы устанавливается градуировкой по абсолютно черному телу (по его модели) или по специальной температурной лампе.  [c.185]

Оптическая система пирометра позволяет создать изображение объекта измерения в плоскости нити пирометрической лампы. При использовании лампы переменного накала ее нить является переменным эталоном интенсивности излучения — последняя зависит от силы протекающего через нить тока. Таким образом, сила тока является мерой яркостной температуры. В момент достижения равенства спектральных интенсивностей излучения объекта измерения и нити лампы вершина нити исчезает на фоне свечения тела.  [c.186]


Погрещности измерения температуры яркостными оптическими пирометрами обусловлены главным образом неточностью знания степени черноты объекта измерения ех] изменением коэффициента пропускания ослабляющего светофильтра при измерениях в помещениях, температура в которых заметно отличается от 293 К отражением лучей объекта измерения от посторонних источников света поглощением лучей в слое воздуха, содержащего пары воды и углекислоты поглощением и рассеянием лучей в слое запыленного и задымленного воздуха ослаблением излучения стеклами, расположенными между объектом измерения и пирометром неточной наводкой пирометра при небольших размерах объектов измерений. Сведения о возможностях расчетной оценки этих погрешностей и рекомендации по их уменьшению содержатся в [5, 7, 12].  [c.187]

В яркостных фотоэлектрических пирометрах чувствительным элементом является фотоэлемент, что позволяет освободить этот тип приборов от известной субъективности измерений, присущих оптическим пирометрам, и, следовательно, повысить точность измерений, а также дает возможность проводить автоматическую запись температуры и использовать эти приборы в системах автоматического регулирования. Ток в цепи фотоэлемента пропорционален потоку излучения, падающего на него от объекта измерения, н может служить мерой его температуры.  [c.187]

Различают две разновидности фотоэлектрических пирометров. К первой из них относятся пирометры, использующие сравнительно узкий спектральный интервал с эффективной длиной волны 7 = = 0,65 мкм (как и у оптических пирометров). Во второй разновидности фотоэлектрических пирометров используются щирокие -спектральные интервалы с различными значениями эффективной длины волны, зависящими как от спектрального состава излучения объекта измерения, так и от спектральных свойств применяемого фотоэлемента. Отсутствие в настоящее время полных сведений о значениях степени черноты тел в различных интервалах длин волн создает серьезные трудности для пересчета яркостной температуры, измеренной пирометрами этой разновидности, на действительную, поэтому такие пирометры используют главным образом для контроля температуры, когда знание действительной температуры необязательно.  [c.187]

Измерение температуры тел пирометрами основано на использовании законов излучения абсолютно черного тела (АЧТ). Поскольку характер излучения реальных тел отличается от характера излучения АЧТ, то измеренная температура тела будет отличаться от действительной. Различают яркостную (спектральную), цветовую (спектрального отношения) и радиационную температуры.  [c.191]

Яркостная (спектральная) пирометрия основана на измерении интенсивности (яркости) излучения тел при фиксированной длине волны. Если для длины волны X интенсивность излучения тела и интенсивность излучения АЧТ равны, то температура АЧТ будет равна яркостной температуре Тя излучающего тела. С термодинамической темиературой Т связана соотношением  [c.191]

Оптические пирометры, так же как и радиационные, градуируют по излучению абсолютно черного тела. Поэтому при измерении температур реальных тел с монохроматическим коэффициентом лучеиспускания < 1 они показывают более низкую по сравнению с действительной, так называемую яркостную -монохроматическую температуру Тд.  [c.461]

Оригинальная методика расчета излучения светящегося пламени была предложена Хоттелем и Брайтоном [Л. 106]. Эта методика основывается на измерении двух яркостных температур пламени при различных длинах волн. Измерения температур производятся с помощью оптического пирометра с красным и зеленым светофильтрами.  [c.226]

Пирометры. Пирометрическое бесконтактное измерение температуры по излучению поверхности тела выполняется с помощью визуальных и фотоэлектрических пирометров [18]. Визуальные оптические пирометры предназначены для работы в видимом спектре и используются для оценки яркостной температуры раскаленных тел. Для средних температур, близких к 30 °С, применяются фотоэлектрические пирометры, работающие в инфракрасной области спектра.  [c.66]


Оптический пирометр градуируется по черному телу, обычно при длине волны Я = 0,65-н0,665 мк, выделяемой красным светофильтром. При визировании оптического пирометра на поверхность нагретого тела определяется температура Т,. Если отраженное излучение тела мало по сравнению с его собственным излучением (например, нагретая заготовка после выдачи ее из печи, струя жидкой стали на выпуске из печи), то по замеренной яркостной температуре Т, можно из уравнения (3-15) определить (при известной е ) величину действительной температуры тела Т. Разница между Т и Г, определяется уровнем спектральной степени черноты тела Чем ближе к единице, тем меньше при прочих равных условиях яркостная температура отличается от действительной (табл. 3-1). Значения спектральной степени черноты (Л,=0,65 мк) для некоторых металлов и материалов приведены в приложении (табл. П-2), а также в [Л. 29, 125, 198]. В общем случае зависит от X, от материала излучающей поверхности, от ее температуры и физического состояния.  [c.43]

На этом основании излучение светящегося пламени рассчитывается по двум исходным параметрам — цветовой и яркостной температурам, которые могут быть одновременно измерены оптическим яркостно-цветовым пирометром.  [c.237]

На рис. 15-8 представлена зависимость энергии полусферического излучения светящегося пламени Е от его цветовой Тр и яркостной температур. Этот график построен для измерения оптическим пирометром с эффективной длиной волны А. = 0,58 при /г =1,2. На оснований приведенного графика по измеренным значениям цветовой и яркостной температур определяется энергия излучения Е. В случае абсолютно черного тела цветовая и яркостная температуры равны истинной температуре. Этому условию отвечает проведенная на графике пунктирная кривая, описывающая излучение абсолютно черного тела.  [c.237]

Выпускаемые промышленностью оптические пирометры для решения такой задачи, к сожалению, не пригодны. Для этого нужны пирометры, которые позволяют записывать быстро изменяющееся по величине излучение с рабочего участка образца площадью менее 1 мм . Указанным требованиям могут удовлетворять некоторые фотоэлектрические пирометры, а также специально разработанные для этой цели малоинерционные радиационные тепломеры ( 2-6) и фотографические яркостные пирометры ( 3-6).  [c.47]

Экспонирование температурной лампы должно производиться в тех же условиях, что и съемка образца в рабочем опыте. В частности, при градуировке между лампой и пирометром следует устанавливать оптическое стекло, совпадающее по параметрам со смотровым стеклом И вакуумной камеры на рис. 3-18. Рассмотренный метод позволяет наряду с температуропроводностью одновременно исследовать спектральную степень черноты e j, образцов. Для этого на рабочем участке лицевой грани образца достаточно высверлить глухое отверстие диаметром й = 0,5 0,8 мм с lld 3, излучение которого близко к черному. По плотности почернения изображения отверстия и соседних с ним участков поверхности образца удается сопоставить истинную и яркостную температуры общего участка поверхности (Т и Т ) и с помощью формулы (3-43) найти искомую степень черноты е ,.  [c.93]

Монохроматические пирометры (иногда их называют оптическими или визуальными) воспринимают излучение в столь узком диапазоне длин волн, что оно считается монохроматическим (обычно это излучение красной части спектра с длиной волны X = 0,65 мкм). Этот участок спектра выделяется светофильтром в соответствии с кривой спектральной чувствительности приемника. В этом случае зависимость энергетической яркости тела от температуры описывается уравнением Планка. Измеряемая монохроматическим пирометром условная температура называется ярко-стной. Действительная температура Т тела через измеренную яркостную Г, вычисляется по выражению  [c.338]

Оптическая (яркостная) пирометрия. Основой оптической (яркостной) пирометрии являются энергетические характеристики монохроматического излучения На рис. 9.1 изображены кривые, выражающие зависимость О  [c.316]

Значение температуры частичного излучения находится между радиационной температурой и яркостной температурой. В зависимости от расположения и ширины спектрального участка пирометр частичного излучения является либо пирометром полного излучения, либо квазимонохроматическим пирометром.  [c.325]

Для измерения температуры бесконтактным методом применяют различного типа пирометры яркостные (оптические или квазимонохроматические) с исчезающей нитью, измеряющие температуру по излучению нагретого тела при определенной длине волны радиационные (пирометры полного излучения), измеряющие температуру по термоэдс, наводимой радиационным излучением раскаленного тела по всему спектру.  [c.36]

Пирометры. Для измерения и контроля температуры используют также пирометры излучения, позволяющие производить замеры температуры в пределах 20—6000°С оптические пирометры ОППИР-017, радиационные пирометры РАПИР и Другие типы. ОППИР-017 иредпазначен для измерения яркостной температуры нагретых тел и является визуальным пирометром, с исчезающей нитью переменного накала. Пределы измерения  [c.93]

Для непрерывного измерения и контроля яркостной температуры нагретых изделий применяют фотодиодный пирометр излучения в пылебрызгозащищенном исполнении ФИТ-028М с преде лами измерения температуры 500— 1600° С.  [c.94]

Чтобы использовать пирометры излучения для прямого определения истинной температуры жидкого металла, их сочленяют с калильной трубкой. Если глубина погружения трубки не менее чем в 10 раз больше ее внутреннего диаметра, пирометр показывает истинную температуру независимо от того, из какого материала изготовлена трубка. Если же полость визирования пирометра недостаточно хорошо воспроизводит условия полного излучения (т. е. условия черного тела), то пирометр дает определенную для данного приспособления постоянную погрешность, поддающуюся устранению путем введения поправки. Пирометры излучения хорошо сохраняют свою градуировку по сравнению с погружаемыми в металл термопарами. Погрешность измерения зависит прежде всего от основной погрещности, свойственной применяемому пирометру. В лучшем случае, при применении оптического яркостного пирометра, погрешность измерения будет не менее 18°. Таким образом, контактные способы, в которых применяются пирометры излучения, во всех случаях дают погрешности большие, чем платинородий-платиновая или молиб-ден-Больфрамовая термопары. Но им свойственна большая точность и устойчивость показаний, чем вольфрам-графитовой и карборунд-графитовой термопарам.  [c.398]


ПИРОМЕТРЫ, приборы для измерения темп-ры нагретых тел по интенсивности их теплового излучения в оптич. диапазоне спектра. Тело, темп-ру к-рого определяют при помощи П., должно находиться в тепловом равновесии и обладать коэфф. поглощения, близким к единице (см. Пирометрия). Применяют яркостные, цветовые и радиационные П. Широко распространены яркостные П., обеспечивающие наибольшую точность измерений темп-ры в диапазоне 10 —10 К. В простейшем визуальном яркостном П. с исчезающей нитью объектив фокусирует изображение исследуемого тела на плоскость, в к-рой расположена нить (ленточка) спец. лампы накаливания. Через окуляр и красный фильтр, позволяющий выделять узкую спектр, область ок. длины волны Я,э=0,65 мкм, нить рассматривают на фоне изображения тела и, изменяя ток накала нити, добиваются, чтобы яркости нити и тела были одинаковыми (нить становится неразличимой на фоне тела). Шкалу прибора, регистрирующего ток накала, градуируют обычно в °С или К, и в момент выравнивания яркостей нити и тела прибор показывает т. н. яркостную температуру T ,) тела. Истинная темп-ра тела Т определяется на основе законов теплового излучения Кирхгофа и Планка по ф-ле  [c.533]

Поток излучения объекта измерения на фотоэлементе сравнивается с потоком излучения лампы 11, которое попадает на фотоэлемент через второе отверстие в диафрагме 7 и светофильтр 8, Поочередное освещение фотоэлемента потоком излучения от объекта измерения и лампы осуществляется с помощью вибрирующей заслонки 6 модулятора 10. Накал лампы И, питаемой током выходного каскада электронного усилителя силового блока 13, автоматически регулируется таким образом, чтобы переменные составляющие сигнала фотоэлемента от сравниваемых потоков излучения объекта измерения и лампы были равны между собой. В уравно-вещенном состоянии падение напряжения на калиброванном сопротивлении R является рабочим сигналом оно однозначно связано с яркостной температурой объекта измерения и фиксируется автоматическим электронным потенциометром 12. Потенциометр может быть оттарирован в градусах яркостной температуры. Время, необходимое для установления показаний пирометра (для выхода на режим компенсации), составляет около 1 с.  [c.188]

Радиационные пирометры, называемые также пирометрами полного излучения, это приборы для измерения температуры тел по плотности потока интегрального излучения. Они используются для измерения температуры от 300 до 3800 К. Эти приборы имеют меньщую чувствительность, чем яркостные и цветовые, но измерения радиационными методами часто удается осуществить технически проще.  [c.191]

Пирометры. Принцип действия пирометров основан на измерении суммарной чнергии или состава излучения нагретых тел. Они позволяют измерять температуру в широких пределах. дистанциоино, В зависимости от принципа действия их подразделяют на пирометры суммарного излучения, называемые также радиационными, яркостные или оптические пирометры, фоточлектрические и цветовые пирометры.  [c.461]

Фотографический метод (который часто называют фотопирометри-ческим) позволяет получить поле температур (яркостных или цветовых) исследуемой поверхности с использованием сравнительно простого оборудования. Имеется несколько отработанных схем фотографических пирометров для регистрации как Та [Л. 11-13, 11-19], так и Тцв [Л. 11-17, 11-18], которые отличаются друг от друга в основном относительным расположением исследуемого образца и эталонных температурных ламп (отсюда следуют различия в оптических схемах), числом этих ламп, способом монохроматизации излучения, а также типом и конструкцией фотоприемника. Метод построен на использовании известной зависимости между температурой объекта и плотностью его изображения на фотографической эмульсии  [c.333]

На рис. 5-41 представлена зависимость энергии полного полусферического излучения светящегося пламени Е от его цветовой Тр и яркостной Т о температур. График построен для условий измерения указанных температур оптическим пирометром с эффективной длиной волны Хзфф =  [c.233]

Особенности температурных измерений. Фотографические пиро метры по своим эксплуатационным возможностям существенно отличаются от обычно используемых оптических визуальных и фотоэлектрических пирометров. В частности, они являются практически единственными оптическими пирометрами, при помощи которых удается регистрировать температурное поле на поверхности объекта в нестационарном режиме. Объясняется это особыми свойствами фотографической пленки как датчика температуры. Фотокамера экспонирует оптически четкое изображение поверхности излучающего объекта (образца) на чернобелую фотографическую пленку. Постороннее освещение объекта не допускается, поэтому плотность почернения изображения объекта на проявленной пленке оказывается однозначно связанной с яркостью исследуемой поверхности. Фотокамеру обычно снабжают светофильтрами и с их помощью монохроматизируют попадающее на пленку излучение объекта при некоторой эффективной длине волны Л. Благодаря этому фотографический пирометр вполне пригоден для измерений яркостной температуры светящихся объектов, от которой всегда можно перейти к интересующей нас истинной (термодинамической) температуре.  [c.88]

Для Д. п. по спектрам поглощения наиболее типичны метод поглощения тонким слоем и метод обращения. Если слой оитически тонкой однородной плазмы толщиной I просвечивать излучением вспомогат. источника со сплошным спектром (v) с яркостной темп рой превышающей темп-ру плазмы Г, то иа фоне этого спектра можно наблюдать линии поглощения. Если Гр<7 , то вместо линий поглощения будут наблюдаться эмиссионные линии. При линии в спектре исчезают ( обращение линий ). Следовательно, варьируя Гр известным образом, можно по моменту обращения линий определить Т (см. также Пирометрия оптическая).  [c.606]

Фотоэлектрические пирометры. Для автоматического измерения, записи и регулирования яркостной температуры тела с помощью фотодатчика и вторичного прибора. используют фотоэлектрические пирометры частотного излучения. Фотодатчик состоит из оптической системы, светофильтра и фотоэлемента, преобразующего энергию излучения тела в фототок, который усиливается электронным блоком и измеряется вторичным прибором. В качестве вторичного прибора чаще всего используются электронные потенциометры, обеспечивающие измерение, запись, сигнализацию и регулирование температуры.  [c.439]

Для светящихся иламен с высоким коэффициентом черноты излучения применяется простой в аппаратурной реализации метод измерения яркостной температуры пламени. Во многих случаях используется обычный оптический пирометр с исчезающей нитью. Отождествление измеренной яркостной температуры пламени с его действительной температурой возможно только для пламени с настолько большой концентрацией взвешенных частиц, что коэффициент черноты его излучения практически равен 1. Поэтому измерение яркостной  [c.422]

Оптическая пирометрия основана на измерении интенсивности излучения нагретого тела, которая связана с его температурой законами теплового излучения илн термического равновесия. Различают спектральную (яркостную), радиационную и цветовую пирометрию. Область применимости оптической пирометрии ограничена чувстаительностью приемников излучения, поскольку с понижением температуры интенсивность излучения уменьшается.  [c.105]


Спектральная (яркостная) пирометрия основана на измерении интенсивности излучения при фиксированной длине волны. Прн этом спектральный пирометр калибруется по излучению (на той же длине волны) абсолютно черного тела в градусах яркостнай температуры Тх, связанной с термодинамической температурой Т соотношеннем  [c.105]

Стабильность показаний оптического пирометра определяется, главным образом, стабильностью электроизмерительного прибора и неизменностью характеристик пирометрической лампочки. Опыт покавал, что пирометрическая лампочка с вольфрамовой нитью в течение очень длительного времени сохраняет присущую ей зависимость яркости нити от силы протекающего через нее тока, если предел яркостных температур ее накала не превыщает 1500°. Однако такой низкий предел измерений пе может удовлетворить современной потребности в измерении высоких температур. Поэтому измерение более высоких температур осуществляется путем уравнивания яркости нити пирометрической лампочки и изображения источника, ослабленного поглощающим стеклом, введенным между лампочкой и объективом телескопа. Это поглощающее стекло (в приборах, имеющих верхний предел измерений 2000°) выбирается такой оптической плотности, чтобы при яркостной температуре излучения 2000° его изображение, полученное с введенным поглощающим стеклом, имело яркостную температуру, не превышающую 1400°. Тогда при измерении любой яркостной температуры излучателя в интервале 1400—2000° нить пирометрической лампочки будет накаливаться до яркостных температур не вы-ще 1400°.  [c.284]


Смотреть страницы где упоминается термин Пирометр излучения яркостный : [c.45]    [c.64]    [c.414]    [c.704]    [c.149]    [c.51]    [c.462]    [c.172]    [c.61]    [c.589]   
Теория и техника теплофизического эксперимента (1985) -- [ c.184 , c.186 , c.187 , c.191 , c.192 ]



ПОИСК



Пирометр излучения

Пирометрия

Пирометрия излучения

Пирометрия яркостная

Пирометры



© 2025 Mash-xxl.info Реклама на сайте