Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кручение балок тонкостенных стержней

Справочное пособие содержит основные сведения по сопротивлению материалов с элементами строительной механики, теории упругости и пластичности. Приводятся данные для расчета стержней на растяжение-сжатие, сдвиг, кручение, для расчета статически определимых и статически неопределимых балок и рам на прочность и жесткость. Рассматривается работа стержней в условиях сложного сопротивления, кривых брусьев, толстостенных труб, тонкостенных стержней, резервуаров, пластинок и оболочек.  [c.2]


По политическим соображениям высшие учебные заведения России были закрыты для учебных занятий в 1905 г. и большей части 1906 г., но деятельность кружка не прекращалась, она даже расширялась, так как у преподавателей было больше свободного времени для научной работы. Делались не только обзоры текущей технической литературы, но и доклады о собственных научных работах. Помню, мне пришлось доложить об исследовании по кручению двутавровых балок, в котором впервые было получено уравнение, нашедшее впоследствии широкое применение в исследованиях продольного изгиба, связанного с кручением в случае сжатия тонкостенных стержней. Эти теоретические результаты были подтверждены опытами, произведенными в механической лаборатории. Докладывал также я о моих работах по устойчивости изгиба двутавровых балок и об устойчивости сжатых пластинок ). Опять же теоретические результаты подтверждались опытами. В то время эти работы, казалось, были скорее академического характера, так как явления упругой неустойчивости возможны только в случае тонких пласти-  [c.682]

При исследовании малых прогибов упругих стержней показано, как можно ввести поперечный сдвиг в дифференциальное уравнение равновесия этой теории. Излагается расчет балок на упругом основании и важная для судостроения задача, поставленная И. Г. Бубновым, о расчете перекрестных балок. Рассмотрен продольно-поперечный изгиб балок, приводится точное, а также приближенное, развитое автором, решение в тригонометрических рядах. Дается систематизированное изложение теории выпучивания прямых сплошных стержней, полос, круговых колец, двутавровых балок, устойчивости вала при кручении. Уточняется известная задача Ф. С. Ясинского о расчете на устойчивость пояса открытых мостов. Приводятся точные и приближенные решения этой задачи энергетическим методом, данные самим автором. Особенно ценны результаты, относящиеся к устойчивости плоской формы изгиба полос и двутавровых балок. Теория изгиба, кручения и устойчивости двутавровых балок была разработана автором в 1905—1906 годах и оказалась основополагающим исследованием для последующих разработок в области расчета и общей теории тонкостенных стержней. Автор приводит компактные формулы для расчета критических сил.  [c.6]

При расчете на кручение несущую платформу рационально моделировать пространственным тонкостенным стержнем. Это позволяет при минимальной трудоемкости получить достоверное значение угловой жесткости платформы. Основным эксплуатационным недостатком несущей платформы (см. рис. 67, а) является отсутствие плоского пола. Создание плоского пола приводит к тому, что боковые борта и пол начинают работать раздельно. Вертикальные нагрузки в основном передаются на пол, а распорное действие груза воспринимается бортами. Это требует мощного подкрепления пола и бортов, как в конструкции, изображенной на рис. 67, б. Пол поддерживается двумя продольными балками 6 и системой поперечных балок 7. Борта подкрепляются вертикальными 8 или продольными 9 элементами. На виде сбоку показаны эти два варианта выполнения бокового борта. В сечении платформы также отражено конструктивное исполнение этих двух вариантов. Левая половина сечения соответствует подкреплению борта вертикальными элементами, а правая половина — продольными. Эти варианты реализованы в конструкциях платформ КрАЗ и КамАЗ.  [c.123]


Кручение мы встречаем в работе валов, деталей машин, винтовых пружин, перекрестных балок различных судовых и строительных конструкций, при действии боковых горизонтальных сил на рельсовый путь, в самых различных пространственных конструкциях, в плитах и оболочках, тонкостенных стержнях и т. д.  [c.97]

Вычислять нормальные напряжения по формуле (128) при поперечном изгибе тонкостенных балок, например корытного (швеллерного) или уголкового сечений, силами, действующими в направлениях, перпендикулярных оси симметрии сечений, можно только в случаях, когда конструктивно предотвращена возможность их скручивания. Это может быть осуществлено постановкой связей, соединяющих балку с соседними элементами конструкции и препятствующих ее кручению. Когда кручение возможно, определять напряжения следует по формулам теории изгиба тонкостенных стержней, изложение которых выходит из круга вопросов, рассматриваемых в кратком учебнике сопротивления материалов.  [c.206]

Найдем положение точки С при условии, что стержень под действием приложенной нагрузки не будет закручиваться. Точка С, как известно из 75, является центром изгиба. Этот центр имеет большое значение для поперечного изгиба балок с несимметричным сечением, а также, как будет показано ниже, для кручения тонкостенных стержней. В настоящем параграфе выведем общую приближенную формулу для определения положения центра изгиба тонкостенного сечения открытого профиля.  [c.334]

Настоящее пособие состоит из четырех разделов. В его первом разделе рассматриваются методы расчетов прямолинейных стержней и стержневых систем, элементы которых работают на растяжение - сжатие. Вычислению геометрических характеристик плоских фигур посвящен второй раздел пособия. Методы решения типовых задач на кручение брусьев круглого и некруглого сечений разбираются в третьем разделе, там же дается понятие о расчете тонкостенных брусьев на кручение. Примеры расчетов балок на прочность и определение их деформаций, а так же метод построения эпюр внутренних усилий в плоских рамах рассматриваются в четвертом разделе пособия.  [c.4]

Э. Хвалла ) исследовал поперечное выпучивание балок несимметричного профиля и дал общий вид уравнений, из которых уравнения для двутавровой балки получаются как частный случай. Автор настоящей книги изложил общую теорию изгиба, кручения и устойчивости тонкостенных элементов открытого профиля ). В. 3. Власов развил в своей книге ) иной метод подхода к теории устойчивости, указав, что для тонкостенных стержней принцип Сен-Вена на теряет силу и что, например, в элементе зетового профиля можно вызвать кручение, приложив по торцам к его полкам изгибающие моменты.  [c.495]

Тимошенко С. П., Применение функции напряжений к исследованию изгиба и кручения призматических стержней. Сб. Спб ин-та инженеров путей сообщения, Спб, 1913, вып. 82, стр. 1—24 отд. оттиск Спб, 1913, 22 стр. (Замечание. В этой статье была найдена такая точка в поперечном сечении балки, к которой следовало бы приложить сосредоточенную силу, чтобы устранить кручение. Таким образом, эта работа оказывается первой, где определялся центр сдвига балки. Рассмотренная балка имела сплошное поперечное сечение в форме полукруга [8.2]. В 1909 г. К- Бах провел испытания швеллерных балок и кащел, что, когда нагрузка прикладывается параллельно плоскости стенки, в балке возникает кручение (см. [8.3] и [8.4]). Он также обнаружил, что закручивание изменяется при боковом смещении нагрузки, но, по-видимому, центр сдвига им не был определен. В 1917 г. А. А. Гриффитс и Дж. Тейлор использовали для исследования изгиба метод мыльной пленки для некоторых типов конструкционных профилей они определили центр сдвига, который был ими назван центром изгиба [8.5]. Общее приближенное решение задачи определения центра сдвига тонкостенного стержня незамкнутого профиля было получено Р. Майяром, который объяснил практическое значение определения центра сдвига в конструкционных профилях [8.6] и ввел термин центр сдвига . Дальнейшее развитие концепции центра сдвига содержалось в работах [8.7—8.16], Всестороннее обсуждение центра сдвига, а также задачи изгиба и кручения балок в общей постановке проведено в работе [8.17] некоторые исторические замечания, относящиеся к центру сдвига, можно найти в работах [8.18] и [8.19].)  [c.555]


А. К. Мрощинского Кр че ЕГйе металлических балок , в которой более доступно для проектировщиков изложена рассматриваемая теория расчета открытых тонкостенных стержней, достаточно полно изложена экспериментальная проверка этой теории, предложен целый ряд таблиц для облегчения практического приложения этой теории, предложена теорема для определения секториальных гео-. метрических характеристик, указан способ составления и приведен сортамент этих характеристик для применяемых в практике металлических прокатных профилей и выявлены рациональные типы различных профилей, находящихся в условиях изгиба и кручения.  [c.9]

В 1949 г. вышли в свет Труды лаборатории строительной механики ЦНИПСа , в которых напечатаны статьи проф. Д. В. Бычкова по расчету неразрезных тонкостенных балок на кручение, кручение тонкостенных стержней при действии продольных сил и о металлических профилях для применения в прогонах под кровли зданий, статья проф. А. Р. Ржаницына по вопросу устойчивости тонкостенных стержней за пределом упругости, статья А. В. Гемер-линга К расчету внецентренно сжатых тонкостенных стержней и статья Н. Я. Грюнберга о расчете криволинейных стержней.  [c.11]

В этом же году были напечатаны работы Бацикадзе по применению метода последовательных приближений к расчету тонкостенных неразрезных балок на кручение, В. В. Болотина — об устойчивости плоской формы изгиба, М. Д. Борисова — о крутильной жесткости составных тонкостенных стержней с упругими планками и работа Л. Н. Воробьева — о влиянии сдвига средин  [c.13]

В том же 1955 г. было защищено три дессертации Н. Д. Рей-ком на тему О несущей способности и деформахХиях тонкостенных стальных балок при изгибе с кручением , А. А. Деркачевым на тему Некоторые вопросы теории тонкостенных стержней открытого профиля и П. Д. Мищенко на тему Расчет тонкостенных стержней открытого профиля с учетом сдвига срединной поверхности .  [c.14]

В предыдущем обсуждении задачи о кручении двутавровых балок и швеллеров (стр. 204) предполагалось, что крутящие моменты приложены к концам Стержня и то все поперечные сеченйя могут совершенно свободно искажаться (коробиться). Однако имеются случаи, в которых одно или несколько поперечных сечений стержня вынуждены оставаться плоскими, и возникает вопрос, как это препятствие искажению влияет на угол закручивания и на распределение напряжений. Для стержней сплошного поперечного сечения, как, например, эллйпсы или прямоугольники, сопротивление искажению оказывает лишь незначительное влияние на угол закручивания ) при условии, что размеры поперечного сечения малы по сравнению с длиной стержня, В случае двутавровых балок, швеллеров и других тонкостенных, стержней открытого профиля препятствие искажению при кручении сопровождается изгибом полок и может оказать значительное влияние на угол закручивания.  [c.212]

В связи с только что упомянутой проблемой приобрел практическую важность и вопрос о кручении тонкостенных элементов открытых профилей. Простейший случай потери устойчивости в крутильной форме уголкового профиля (рис. 196) был уже рассмотрен ). Общее исследование потери устойчивости в крутильной форме тонкостенных элементов, подобных тем, что применяются в конструкциях самолетов, было выполнено Г. Вагнером ). Более строгое обоснование этой теории дал Р. Каппус ). За время, истекшее после опубликования этих работ, немало инженеров поработало над изучением поперечного выпучивания балок и крутильной формы потери устойчивости сжатых тонкостенных элементов результаты этих исследований нашли широкое использование не только в самолетостроении, но также и в строительстве мостов. Здесь следует отметить работы Гудира ), исследовавшего устойчивость не только отдельного сжатого стержня при различных условиях, но также и стержня, жестко соединенного с упругими пластинками. Пользуясь теорией большой деформации, он дал строгое подтверждение фактической правильности той предпосылки, на  [c.494]

Библиографию по перечисленным в настоящем очерке работам можно найти в книге Д. В. Бычкова и А. К. Мрощинского Кручение металлических балок , в книге под редакцией проф. И. М. Рабиновича, Строительная механика в СССР — 1917—1957 и во втором издании книги проф. В. 3. Власова Тонкостенные упругие стержни .  [c.16]

Методом сил для расчета плоских, тонкостенных систем мы уже пользовались в главе III при выводе уравнений трех и пяти бимоментов для расчета неразрезных балок на кручение и там встретились с некоторыми особенностями, обычно ие имеющими места в элементарном курсе строительной механики. В частности, это относится к крайнему пролету неразрезной балки с консолью. При расчете неразрезных балок на изгиб наличие консоли, как известно, ничего нового в уравнение трех изгибающих моментов не вносит, так как в нетонкостенных стержнях усилия, возникающие в консоли, являются величинами статически определимыми и не зависят от опорных моментов балки.  [c.339]

Поскольку в данной работе мы рассматриваем расчет тонкостенных. балок и рам, как правило, только на кручение, то нас будут интересовать только те из перечисленных компонентов сил, которые могут вызвать изгибно-крутнльные силовые факторы в стержнях, а таковыми являются Qy, М , I и В Qy и М входят потому, что при изгибе какого-нибудь стержня из плоскости рамы другие стержни системы, примыкающие к нему под углом, будут закручиваться).  [c.340]


Смотреть страницы где упоминается термин Кручение балок тонкостенных стержней : [c.630]    [c.468]   
Справочник машиностроителя Том 3 (1951) -- [ c.225 ]



ПОИСК



Балка тонкостенная

Балки кручение

Кручение стержней

Кручение тонкостенных

Кручение тонкостенных стержней

Стержень тонкостенный



© 2025 Mash-xxl.info Реклама на сайте