Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Анизотропия магнитной проницаемости

Наличие в изотропном ферромагнитном материале механических напряжений а способствует появлению анизотропии магнитной проницаемости u, которая в этом случае достаточно хорошо описывается следующим выражением [5]  [c.94]

Анизотропия в ряде случаев нежелательна. Например, при глубокой штамповке листов во избежание различных дефектов (складчатость, волнистая кромка и т. д.) он должен деформироваться во всех направлениях одинаково. Однако в некоторых случаях получение текстуры желательно. В трансформаторной стали используют анизотропию магнитной проницаемости, таким образом, чтобы ее максимальное значение вдоль [100] было параллельно направлению магнитного потока.  [c.81]


Показано, что величина коэффициента электромеханической связи ферритового сердечника в основном определяется его остаточной намагниченностью, константами магнитострикции и анизотропии, магнитной проницаемостью и плотностью.  [c.171]

С другой стороны, в трансформаторном железе анизотропию магнитной проницаемости очень эффективно используют, распо-  [c.715]

Для того чтобы выяснить, почему электротехническую сталь легируют кремнием, а не каким-либо другим элементом, необходимо рассмотреть влияние содержания различных элементов, образующих с железом твердый раствор, на константы магнитной кристаллической анизотропии /С и магнитострикции (от этих величин зависят потери на гистерезис), величину намагниченности насыщения (электротехническая сталь должна иметь возможно более высокую индукцию) и величину удельного электросопротивления (эта характеристика определяет потери на токи Фуко). Изменение указанных характеристик в зависимости от содержания легирующего элемента приведено на рис. 98—101. На магнитную проницаемость и потери на гистерезис в большей степени  [c.139]

Пермаллои. Они относятся к магнитомягким материалам, обладающим высокой магнитной проницаемостью в слабых полях, и представляют собой железоникелевые сплавы. Такие сплавы характеризуются тем, что магнитная анизотропия и магнитострикция практически отсутствуют это является одной из причин особенно легкого намагничивания пермаллоев. Пермаллои подразделяются на высоконикелевые (72—80 % никеля) и низконикелевые (40— 50 % никеля).  [c.95]

Магнитная проницаемость. Широко применяемые смешанные, в частности двойные ферриты, состоят из ферромагнитного (например NiO-Fe Og) и антиферромагнитного феррита — цинкового или кадмиевого. При увеличении концентрации антиферромагнитного феррита уменьшается обменное взаимодействие между магнитоактивными ионами, снижаются точка Кюри (рис. 18. 2), а также анизотропия и магнитострикция. В результате растет магнитная проницаемость  [c.243]

Следует отметить, что из многочисленных методов осаждения ферромагнитных покрытий для изготовления сердечников феррозонда может быть рекомендован метод электрохимического осаждения металлов из солей на катод [47, 48]. Этот метод позволяет 1) без особых трудностей получать покрытия толщиной 5—10 мкм (такая толщина необходима для того, чтобы избавиться от некоторых отрицательных свойств, присущих собственно магнитным пленкам значительно меньшей толщины, а также для обеспечения необходимой анизотропии формы сердечников по отношению к измеряемому полю) 2) наносить покрытия на основы любых форм, в том числе и на наиболее устойчивую к механическим воздействиям трубчатую 3) достигать высокой восприимчивости магнитных свойств покрытий от образца к образцу 4) получать изотропные покрытия с высокими значениями магнитной проницаемости, что крайне желательно при использовании трубчатых сердечников в феррозондах с поперечным возбуждением.  [c.54]


Намагниченность насыщения, температура точки Кюри, константы магнитной кристаллографической анизотропии, магнитострикция насыщения — все это относится к основным магнитным свойствам, связанным со строением вещества. Эти свойства зависят только от основного химического состава и не зависят от структуры вещества. Поэтому их называют структурно-нечувствительными. Магнитная проницаемость, коэрцитивная сила, остаточная намагниченность, весь ход кривой намагничивания и вид петли гистерезиса зависят от структуры вещества. Эти свойства называют структурно-чувствительными.  [c.12]

Холодная деформация ведёт к изменению механических и физических свойств и к их анизотропии ввиду образования текстуры. С увеличением степени холодной деформации все показатели сопротивления деформации увеличиваются, а показатели пластичности и вязкости уменьшаются. Электропроводность изменяется особенно резко при малых степенях деформирования. Обычно холодная деформация ведёт к небольшому уменьшению электропроводности, но для некоторых металлов (молибден, никель, вольфрам) оно может быть значительным. Способность металлов к растворению различного рода реагентами и кислотами, как правило, увеличивается и иногда может стать весьма значительной. Магнитные свойства изменяются коэрцитивная сила и гистерезис увеличиваются, а магнитная проницаемость уменьшается. Отмечено также, что холодная деформация уменьшает теплопроводность, а также иногда изменяет цвет сплавов.  [c.270]

Так, при глубокой штамповке листов во избежание образования складчатости, волнистой кромки и т. д. лист должен деформироваться во всех направлениях одинаково, поэтому анизотропия в данном случае нежелательна. Анизотропию трансформаторной стали используют таким образом, чтобы максимальное значение магнитной проницаемости вдоль направления [100] было параллельно направлению магнитного потока.  [c.86]

Ki — константа кристаллографической анизотропии Хв — магнитная проницаемость возврата Я — напряженность поля тро- гания  [c.11]

В первых разделах этой главы в общих чертах описываются основные магнитные свойства аморфных металлических материалов. Далее упор будет сделан на аморфных ферромагнитных материалах, обладающих одним важным отличительным свойством — высокой магнитной проницаемостью, т. е. на магнитномягких аморфных сплавах. Поскольку существенную роль здесь играют процессы намагничивания, особое внимание будет уделено рассмотрению доменной структуры аморфных металлов, явлениям магнитострикции и магнитной анизотропии. Наконец, будет дан краткий анализ магнитных свойств с точки зрения практического использования аморфных металлических материалов.  [c.121]

Ранее уже говорилось о том,что если проводить термическую обработку в магнитном поле ниже температуры Кюри, то магнитные домены не существуют и, следовательно, стабилизации границ доменов не происходит. Однако, поскольку обычно магнитное поле в этом случае имеет постоянное направление, то возникает одноосная магнитная анизотропия, и в результате максимальная проницаемость получается большая, а начальная магнитная проницаемость не улучшается, на что мы уже обращали внимание. Для устранения этого недостатка предложен специальный метод термической обработки, в котором направление магнитного поля постоян-  [c.164]

Особенности строения металлических стекол обусловливают отсутствие характерной для кристаллов анизотропии свойств, высокую прочность, коррозионную стойкость и магнитную проницаемость, малые потери на перемагничивание.  [c.236]

В АМС различают два типа упорядоченного расположения атомов различных компонентов - композиционный, или химический и геометрический, или физический ближний порядок, который включает в себя как топологический ближний порядок, так и геометрические искажения. Экспериментальное установление параметров упорядочения в АМС является очень сложной задачей, однако несомненно, что изменения некоторых свойств, связанные с термической обработкой или пластической деформацией, обусловлены изменением ближнего порядка. В частности, чувствительность температуры Кюри ферромагнитных АМС к термической обработке, и в особенности к термической обработке в магнитном поле, указывает на происходящие изменения в структуре ближнего порядка. Наведенная с помощью магнитного поля структурная анизотропия очень важна для практического использования, поскольку она определяет магнитную проницаемость, эффекты магнитного последействия, магнитные потери в ферромагнитных АМС.  [c.401]


Уменьшение начальной магнитной проницаемости в результате ТМО обусловлено увеличением энергии магнитной анизотропии благодаря возникновению наведенной магнитной анизотропии. До термомагнитной обработки в размагниченном состоянии имело место равновероятное распределение векторов спонтанной намагниченности различных доменов по всем направлениям. После ТМО векторы намагниченности различных доменов получают преимущественную ориентацию вдоль направления поля отжига, т. е. вдоль оси тороида. Это приведет к увеличению числа 180° соседств доменов и, следовательно, к изменению характера зависимости J=f H) и  [c.181]

Анизотропия в ряде случаев нежелательна. Так, при глубокой штамповке листового материала во избежание различных дефектов (складчатость, волнистая кромка и т. д.) он должен деформироваться во всех направлениях одинаково. Но в некоторых случаях пoлyqe-ние текстуры желательно. Например, в трансформаторном железе используют анизотропию магнитной проницаемости, направляя ее с максимальной проницаемостью параллельно направлению магнитного потока (см стр. 322).  [c.80]

Амплитуда и форма резонансной кривой поглощения определяются процессами релаксации. Наличие их приводит к тому, что компоненты тензора магнитной проницаемости становятся комплексными величинами. При отсутствии внешнего магнитного поля магнитная проницаемость скалярна. Ширина резонансной кривой ферромагнитного резонанса АН обычно определяется как разность полей, при которых мнимая часть диагональной компоненты тензора проницаемости ц" составляет половину своего значения м-"рез в точке резонанса. Зависимость ее вещественной ц и мнимой ц" частей от частоты называют магнитными спектрами. Для магнитных спектров ферритов характерно наличие двух областей дисперсии. Низкочастотная область дисперсии обусловлена смещением границ доменов, а более высокочастотная — естественг.ым ферромагнитным резонансом в эффективных полях анизотропии и размагничивающих полях.  [c.708]

Основные физические рвойства электротехнической стали следующие температура Кюри 0 = 768° С, намагниченность насыщения при 20° С = 2,15 тл (21 580 гс), плотность 7,874 г/см , константа магнитной кристаллической. анизотропии /С = 4,2-10 джУм (4,2-10 эрг/см ), константа магнитострикции может изменяться от 5-10 до —5-10 . Удельное электросопротивление р и магнитная проницаемость .i зависят от содержания в стали примесей, которое может изменяться в зависимости от способа ее получения и условий термической обработки.  [c.132]

Теория упорядочения. Если считать, что частично упорядоченное состояние представляет собой смесь двух фаз (упорядоченной и неупорядоченной) и эти фазы имеют различные намагниченность и температуру Кюри и одна из фаз представляет собой иглообразные образования, то такая структура при одинаковом расположении иглообразных образований может обладать магнитной анизотропией формы. Магнитное поле, приложенное в процессе упорядочения, может привести к тому, что иглы будут расти вдоль направления поля. В результате возникает одноосная магнитная анизотропия. Направление наи-легчайшего намагничивания будет совпадать с основной осью иглообразных образований. Основная трудность этой теории заключается в том, что такую двухфазную модель трудно согласовать с высокой магнитной проницаемостью и малыми потерями на перемагничивание. Кроме этого, имеются сплавы, в которых не наблюдается процесса упорядочения и тем не менее они хорошо поддаются термомагнитной обработке.  [c.155]

При определенном соотношении между никелем и железом магни-тострикция и анизотропия сплава переходят через нуль, и сплав приобретает высокую магнитную проницаемость. Это используется в пермаллоях по содержанию никеля сплавы в основном делятся на две группы . высоконикелевые — с содержанием никеля 78,5% и низконикелевые с содержанием никеля до 50%. Низконикелевые пермаллои при 50% Ni имеют до 4000 р.г ах До 45000 индукция достигает 1,5 тл, р = 45-10" ом-см. Удельное сопротивление при введении Si молено повысить до 90 -10" ом-см, но ири этом снилеается индукция Bs = 1,0 тл. Указанные характеристики обеспечиваются лишь ири определенной термической обработке. Высоконикелевые пермаллои помимо Ni (72—80%) содерлеат таюке легирующие добавки  [c.236]

НЗМ, 68НМ Высокая магнитная проницаемость при однополярном намагничивании. Сплавы обладают анизотропией магнитных свойств  [c.158]

Физическая О. рассматривает проблемы, связанные с процессами испускания света, природой света и световых явлений. Утверждение, что свет есть поперечные ал.-маги, волны, явилось результатом огромного числа эксперим. исследований дифракции света, интерференции света, поляризации света, распространения света в анизотропных средах (см. Кристаллооптика, Оптическая анизотропия]. Совокупность явлений, в к-рых проявляется волновая природа света, изучается в крупном разделе фиа. О.— волновой оптике. Её матем. основанием служат общие ур-ния класснч. электродинамики — Максвелла уравнения. Свойства среды при этом характеризуются макроскодич. материальными константами — значениями диэлектрической проницаемости 8 и магнитной проницаемости р,, входящими в ур-ния Максвелла в виде коэффициентов. Эти значения однозначно определяют показатель преломления среды л = [Лер.  [c.419]

Характер температурной зависимости величины % для ферромагнетиков иллюстрируется рис. 3-2 (на этом графике изображена температурная зависимость магнитной проницаемости л = 1 + 4яу. = 1 -Н (4я"/)/а для железа при Я = 0). Как видно из этого графика, с приближением к точке Кюри при Я F= onst магнитная восприимчивость ферромагнетика возрастает, достигая максимума вблизи точки Кюри, а в непосредственной близости от точки Кюри резко уменьшается — так называемый эффект Гопкинсона (этот эффект наблюдается только в слабых магнитных полях). Появление этого максимума обусловлено значительным уменьшением магнитной анизотропии ферромагнетика вблизи точки Кюри, благодаря чему процесс намагничения ферромагнетика становится более легким , а уменьшение X при дальнейшем приближении к точке Кюри определяется исчезновением спонтанной намагниченности ферромагнетика при Т = в. При Г 0 величина % продолжает уменьшаться с ростом температуры, причем зависимость % от Т в этой области описывается законом Кюри—Вейсса (3-14) 3-3.  [c.45]


Можно ожидать, что именно благодаря этим своим особенностям аморфные ферромагнетики имеют чрезвычайно высокую магнитную проницаемость. В так называемых нулевых ферромагнетиках, обладающих идеальной магнитной анизотропией, параллельность магнитных моментов поддерживается только за счет энергии обменного взаимодействия, а магнитный лоток замыкается внутри образца вследствие конкуренции с мат-нитостатичеокой энергией. Как видно из схемы, на рис. 5.13, в этом случае направление вращения магнитного момента в некоторых частях образца одинаково, в результате чего может возникнуть так назькваемая круговая доменная структура.  [c.133]

Рис. 5.35. Закон Аррениуса для магнитной анизотропии, наведенной магнитным полем в сплаве (Feo,2 oo,8) 7oSi2,5627,5 (т — среднее время релаксации при температурах отжига Та). Закон Аррениуса наблюдается также для энергии магнитного гистерезиса IFa и магнитной проницаемости iie [87] Рис. 5.35. <a href="/info/22935">Закон Аррениуса</a> для <a href="/info/16483">магнитной анизотропии</a>, наведенной <a href="/info/20176">магнитным полем</a> в сплаве (Feo,2 oo,8) 7oSi2,5627,5 (т — <a href="/info/401979">среднее время релаксации</a> при <a href="/info/450129">температурах отжига</a> Та). <a href="/info/22935">Закон Аррениуса</a> наблюдается также для <a href="/info/16485">энергии магнитного</a> гистерезиса IFa и магнитной проницаемости iie [87]
К ак следует из раздела 5.5.3, сплавы с (малой лаведенной магнитной анизотропией должны иметь низкую температуру Кюри и не должны содержать атомные пары разных сортов . К таким сплавам относятся, например, сплавы системы Со —Si —В и ряд других. Хотя при низкой температуре Кюри сплавы Со — Si — В имеют сравнительно невысокую и отличную от нуля магнитострик-цию, они все же представляют интерес, как материалы с высокой и стабильной магнитной проницаемостью.  [c.168]

Сплавы Fe—Si—В с высоким магнитным насыщением бьши предложены для замены обычного кристаллического сплава Fe—Si в сердечниках трансформаторов, а также сплавов Ni— Fe с высокой магнитной проницаемостью. Отсутствие магнитокристаллической анизотропии в сочетании с довольно высоким электросопротивлением снижает потери на вихревые токи, в особенности на высоких частотах. Потери в сердечниках из разработанного в Японии аморфного сплава FegjBi3Si4 2 составляют 0,06 Вт/кг, т. е. примерно в двадцать раз ниже, чем потери в текстурованных листах трансформаторной стали. Экономия за счет снижения гистерезисных потерь энергии при использовании сплава Fes3Bi5Si2 вместо трансформаторных сталей составит только в США 300 млн долл/год. Эта область применения металлических стекол имеет широкую перспективу.  [c.864]

Высокая магнитная индукция технического насыщения < Низкая остаточная магнитная индукция и постоянство магнитной проницаемости. Сплавы обладают анизотропией магнитных свойств Высокая магнитная проницаемость при однополярном намагничивании. Сплавы обладают анизотропией магнитйых свойств Высокая коррозионная стойкость  [c.316]


Смотреть страницы где упоминается термин Анизотропия магнитной проницаемости : [c.120]    [c.86]    [c.279]    [c.500]    [c.158]    [c.76]    [c.76]    [c.557]    [c.678]    [c.703]    [c.306]    [c.157]    [c.165]    [c.166]    [c.130]    [c.549]    [c.559]    [c.72]   
Физическое металловедение Вып II (1968) -- [ c.425 ]



ПОИСК



Анизотропия

Магнитная анизотропия

Магнитная проницаемост

Магнитная проницаемость

Проницаемость



© 2025 Mash-xxl.info Реклама на сайте