Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Водород термодинамические свойства при

При определении термодинамических свойств перегретого водяного пара в области весьма высоких давлений и температур до р = 1000 кг см а t = 1000° С предположено, что установленные опытом законы в пределах исследуемых давлений до р = = 500 am п t = 600° С распространяются и на области более высоких температур, до таких значений температуры, при которых состояние пара претерпевает или фазовые изменения или имеет место влияние диссоциации водяного пара на кислород и водород. Нижней границей значений температур, при которых в области весьма высоких давлений заметно влияние фазовых изменений, принята температура t = 550° С. Верхней границей значений температур, за которой заметно влияние диссоциации при малых и средних давлениях пара, принята температура t = 1000° С.  [c.34]


На рис. 3.10 приведена граница инверсии скорости звука в водяном паре, которая является геометрическим местом точек таких значений put, при которых скорость звука в водяном паре имеет минимум Аналогичные зависимости, приведенные к критическим параметрам для водорода (кривая 1) и углекислого (кривая 2) газа, изображены на рис. 3.11. Эти кривые построены как результат анализа зависимостей, приведенных на рис. 3.8 и 3.9. Совершенно очевидно, что полученные на рис. 3.10 и 3.11 графики р = f t) являются геометрическим местом не только точек, в которых имеет минимум температурная зависимость скорости звука, но и таких, в которых постоянными остаются показатель изоэнтропы (к = 2 для Н О и СО и = 2,4 для Нг) и объемное соотношение сжимаемой и конденсированной фаз ((3 = 0,5) в реальном газе. Из анализа табличных данных термодинамических свойств различных газов можно установить, что при определенных значениях р и Т в закритической области состояния имеется минимальное (Эр/ЗПр и максимальное (dv/dT)p значения производной. С точки зрения возможности построения границы инверсии температурной зависимости скорости звука для различных газов интересно выяснить, не совпадают ли с ней экстремальные точки указанных выше производных. С этой целью запишем плотность реального газа как плотность однород-  [c.61]

Диссоциация двухатомных газов. Для решения ряда важных технических задач представляет особый интерес изучение термодинамических свойств диссоциирующих двухатомных газов (таких, в частности, как водород, кислород, азот и др.). При невысоких давлениях компоненты смеси (одноатомный и двухатомный газы) могут рассматриваться как идеальные газы. Константа равновесия реакции диссоциации, уже рассмотренной нами выше, определяется уравнением (15-49). Это уравнение может быть переписано в виде  [c.489]

Ниже помещены таблицы термодинамических свойств водорода на линии насыщения, а также значения V, I ж S ъ температурном интервале 14—1500 °К и при давлениях от 1 до 1000 бар. При этом до 500 °К данные приводятся отдельно для нормального водорода и параводорода, поскольку до этой температуры их термодинамические свойства различны.  [c.8]

Термодинамические свойства водорода при высоких температурах  [c.23]

О термодинамических свойствах водорода и дейтерия при высоких давлениях  [c.12]


Особенно целесообразно проектировать насос для горючего с большой угловой скоростью при использовании в качестве горючего жидкого водорода. В связи с малой плотностью водорода при малой угловой скорости размеры насоса получаются значительными. Термодинамические свойства водорода благоприятно влияют  [c.282]

Алюминий является термодинамически неустойчивым элементом. Его нормальный потенциал равен —1,67 В. Однако вследствие образования на его поверхности в кислородсодержащих средах защитной окисной пленки, состоящей из АЬОз или АЬОз-НзО, толщиной в зависимости от условий образования от 50 до 1000 нм, коррозионная стойкость алюминия и его сплавов определяется свойствами этой защитной окисной пленки, имеющей амфотерный характер. В связи с этим алюминий устойчив при pH от 3 до 9. В сильнокислых щелочных растворах алюминий активируется, потенциал его становится отрицательным и он начинает растворяться с выделением водорода.  [c.73]

В настоящее время резко увеличивается интерес к ниобию и танталу как к конструкционным материалам, используемым при высоких температурах. Как известно, механические свойства этих металлов, определяющие их применение при высоких температурах, сильно зависят от присутствия небольшого числа атомов примесей в решетке. Эти свойства особенно чувствительны к присутствию примесей газообразных элементов — кислорода, азота и водорода. Следовательно, важно количественно оценить сродство металла к этим газам. Термодинамические данные о растворении газов в металле при очень высоких темпе-  [c.79]

Помимо кислорода на свойства поверхности металлов сильное химическое воздействие может оказать водород. Так, химическое сродство водорода к углероду может привести, например, к восстановлению карбидных фаз сталей. При высоком давлении водорода и температуре 200...600 °С создаются благоприятные термодинамические условия реакций диссоциации цементита и обезуглероживания стали  [c.76]

Несмотря на большой отрицательный электрохимический потенциал бериллия (—1,85 В) и, следовательно, его высокую термодинамическую активность, бериллий, вследствие образования защитных пленок, довольно устойчив в атмосферных условиях. Его блестящая, серебристая поверхность лишь очень медленно тускнеет на воздухе. В этом отношении он похож на алюминий и магний, на которые несколько похож по внешнему виду и химическим свойствам. При нагреве бериллий, по сравнению с алюминием и магнием, гораздо лучше сохраняет свою прочность. При нагреве на воздухе до 400—500 °С бериллий окисляется очень слабо, при 800Х — достаточно быстро. С водородом заметно не реагирует, с азотом при высоких температурах образует нитриды ВезЫз. Холодная и горячая вода не оказывают на бериллий заметного воздействия. Стационарный потенциал бериллия в растворе 0,5 н. Na l равен пример-  [c.276]

Впервые приводятся данные о термодинамических свойствах диссоциированного водорода в термпературном интервале от 1500 до 6000 °К при давлениях от 0,1 до 1000 бар, вычисленные ГГ. М. Кессельманом и П. М. Горьжиным [8, 9]. Кривые на рис. 2 и 3 характеризуют степень диссоциации Од и теплоемкость Q диссоциированного водорода в зависрпчости от температуры на различных изобарах.  [c.8]

Термодинамические свойства нормального водорода при различных температурах и давлениях V (см 1моль), I дж моль), S ж (дж1моль град) [5, 7]  [c.9]

Термодинамические свойства диссоциированного водорода при различных температурах и давлениях v (м кг), i (кдж/кг), svi (кдж1кг град) [8, 9]  [c.29]

Термодинамические свойства диссоциированного водорода при различньк температурах и давлениях — мольная доля Н , М — молекулярный вес смеси> и — скорость звука (м1сек) жк — показатель адиабаты [8, 9]  [c.34]

Рабочей жидкостью для гидравлических турбин обычно является вода. Однако насосы перекачивают самые разнообразные жидкости с сильно отличающимися термодинамическими свойствами. Даже термодинамические свойства воды значительно изменяются при значительном изменении температуры. Таким образом, при проектировании насосов и их применении необходимо учитывать термодинамические свойства жидкостей (и их паров). Как уже обсуждалось в разд. 6.7, для жидкостей с высоким давлением насыщенного пара (и плотностью) основное влияние термодинамических свойств состоит в уменьшении размеров каверн по сравнению с жидкостями, имеющими низкое давление насыщенного пара, вследствие чего уменьшается влияние самой кавитации на характеристики насоса. Поэтому увеличение температуры данной жидкости ослабляет влияние кавитацни и может привести к подобию кавитационных явлений в нагретой воде и жидком водороде. На этом принципе основан метод моделирования, описанный в разд. 6.7, который Стал и Степанов [11] применяют для насосов, работающих в условиях развитой кавитации.  [c.649]


Такие газы, как кислород, водород, азот, воздух при относительно низких давлениях и высоких температурах по своим свойствам близки к свойствам идеального газа. Поэтому при термодинамических исследованиях процессов, протекающих в этих газах, используют законы и уравнение состояния идеального газа. Введение понятия идеального газа облегчило задачу термодинамических исследований, позволило получить простые математические уравнения для подсчета различных физических величин, характеризующих изменение состояния оабочего тела.  [c.14]

Особое значение для применения хладонов в качестве хладагентов и теплоносителей имеет их термическая стойкость. Фторорганические соединения этого класса при высоких температурах могут образовывать твердые, жидкие и газообразные продукты, обладающие свойствами, отличными от свойств исходного вещества. Образующиеся соединения не только изменяют физико-химические и термодинамические свойства рабочего тела, но могут быть токсичными (фторфосген, фтористый водород) и коррозионноактивными (фтористый и хлористый водород, хлор и т. д.). Твердые и смолообразные продукты выпадают на теплопередающих поверхностях, нарушая теплообмен, газообразные — требуют специальных мероприятий, обеспечивающих вывод их из контура. Поэтому выбор фторорганического (как и любого другого органического) теплоносителя определяется в значительной степени егс способностью длительно сохранять свой состав и свойства, т. е, его термической стойкостью.  [c.160]

В связи с незначительным изменением давления и температуры во входной части насоса при расчете на кавитацию плотность и температура принимаются равными заданным на входе в насос. Расчет на кавитацию, как правило, ведется без учета влияния термодинамических свойств жидкого водорода на антикавитационные качества насоса. Поэтому это влияние дает дополнительное улучшение антнкави-тационных свойств.  [c.350]

В 1889 г. 1-я ГКМВ утвердила принятую МКМВ в 1887 г. шкалу водородного газового термометра постоянного объема, основанную на реперных точках плавления льда (О °С) и кипения воды (100 °С) и получившую название нормальной водородной шкалы в качестве международной практической шкалы. В описании шкалы указывалось начальное давление заполнения (1 м рт. ст. при о °С) и никаких поправок на отклонение свойств водорода от идеального газа не вводилось. По этой. причине шкала была названа практической . Она, очевидно, и не была термодинамической, поскольку наблюдалась зависимость результатов измерений от свойств рабочего газа. В гл. 3 будет подробно рассмотрено, каким образом отклонения от свойств идеального газа учитываются в газовой термометрии. Здесь же следует подчеркнуть, что для газового термометра постоянного объема, калиброванного в двух точках и примененного для интерполяции между ними, как это сделал Шаппюи, погрешности, вызванные неидеальностью газа, скажутся лишь в меру изменения самой неидеальности между реперными точками. Для водорода эти изменения от О до 100 °С неве-  [c.39]

Химическая термодинамика занимается изучением химических процессов с термодинамической точки зрения и в отличие от технической рассматривает явления, в которых происходят знутрп-молекулярные изменения рабочего тела при сохранении гтомами молекул своей индивидуальности. Образование новых веществ (рабочего тела) или разложение веществ осуществляется в результате химической реакции. Для химического процесса характерно изменение числа и расположения атомов в молекуле реагирующих веществ. В ходе реакции разрушаются старые и возникают новые связи между атомами. В результате действия сил связей шэоисхо-дит выделение или поглощение энергии. Энергия, которая может проявляться только в результате химической реакции, называется химической энергией. Химическая энергия представляет собой часть внутренней энергии системы, рассматриваемой в момент химического превращения, ибо в запас внутренней энергии входит не только кинетическая и потенциальная энергия молекул, но и ншергия электронов, энергия, содержащаяся в атомных ядрах, лучистая энергия. Отличительным признаком химической реакции является изменение состава системы в результате перераспределения массы между реагирующими веществами в изолированной системе. Если же система не изолирована от окружающей среды, то свойства ее должны зависеть также от количества вещества, введенного в систему или выведенного из нее. Если, например, в калориметрическую бомбу поместить смесь из двух объемов водорода и одного объема кислорода (гремучий газ), то, несмотря на отсутствие теплообмена, происходит реакция с образованием водяного пара  [c.191]

Цитируем Он (т. е. Ковтун) снова и снова вчитывался в отточенные формулировки термодинамических теорем, пытаясь найти хоть какие-нибудь неиспользованные лазейки в неприступном фундаменте королевы наук . И, представьте себе, нашел Нашел в самой сердце-вине, в святая святых термодинамики, в знаменитой фундаментальной теореме Карно, гласящей, что КПД цикла зависит только от температуры нагревателя и холодильника и не зависит ни от конструкции тепловой машины, ни от природы рабочего газа. Ковтун, конечно, не собирался опровергать эту теорему, в правильности которой сомневаться не приходилось. Но он пришел к выводу, что несмотря на кажущуюся общность, она не всеобъемлющая и справедлива далеко не во всех случаях. В самом деле, что значит КПД не зависит от природы рабочего газа То, что газ может быть любой — и гелий, и водород, и азот Справедливо. Но при этом в неявной форме еще подразумевается, что коль газ уже выбран, он все время остается одним и тем же, что свойства его во время работы не меняются. А если мы выберем такие газы или их смеси, в которых на протяжении цикла происходят обратные химические реакции Очевидно, что на этот случай теорема Карно уже не распространяется и ее ограничения можно обойти .  [c.210]


Данная глава рассказывает о современном состоянии исследований свойств хемосорбированного водорода. Эта область науки в значительной мере обязана своими успехами последним достижениям техники получения ультравысокого вакуума, способной обеспечить чистоту поверхностей адсорбентов, а также квантов.омеханическим и статистико-термодинамическим методам получения надежной информации о хемосорбированном состоянии. Обзор теоретических исследований хемосорбированного состояния начинается с традиционного рассмотрения электронной структуры неограниченного кристалла. Нарушение конфигурации электронов кристалла, связанное с созданием поверхности, принимается во внимание при описании поверхностных состояний и распределения электронов на поверхности металлов (см. 2, п. 1). Хемосорбция водорода на собственных полупроводниках, таких, как Ое и 51, или на примесных полупроводниках, таких, как ZnO, обсуждается в 3 с учетом поверхностных состояний. В случае металлов на основе квантовомеханического рассмотрения делается вывод о существовании двух видов хемосорбированного состояния — г-состояний и -состояний хемосорбированного водорода, условно называемых г- и 5-ато-мами ( 4).  [c.11]

В современном состоянии Вселенной лишь очень малая часть энергии находится в форме протонов, нейтронов и электронов, из которых состоит обычное вещество во всех галактиках. Остальная энергия приходится на долю теплового излучения при температуре около 2,8 К и частиц, называемых нейтрино, которые чрезвычайно слабо реагируют с другими частицами. То небольшое количество вещества, которое существует в виде звезд и галактик, не находится в термодинамическом равновесии. Химическое сродство реакций, происходящих ныне в недрах звезд, отлично от нуля. Ядерные реакции, идущие в недрах звезд, производят все известные химические э.пементы из водорода [2-4]. Следовательно, наблюдаемые свойства вещества, напрпмер распространенность элементов в звездах и планетах, не могут быть объяснены на основе теории химического равновесия. Для понимания распространенности элементов необходимо знание скоростей реакций и истории звезды или планеты.  [c.227]


Смотреть страницы где упоминается термин Водород термодинамические свойства при : [c.552]    [c.150]    [c.104]   
Справочник по теплофизическим свойствам газов и жидкостей (1972) -- [ c.0 ]



ПОИСК



Водород

Водород (параводород термодинамические свойства

Водород Свойства

Водород, вязкость термодинамические свойства

Свойства термодинамические



© 2025 Mash-xxl.info Реклама на сайте