Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Адсорбция ингибиторов аминов

Адсорбционная теория органических ингибиторов 108, 146 Адсорбция ингибиторов аминов 75, 76 ванадат-ионов 74, 75 из газовой фазы и электролитов 78 сл. изотермы 143, 144 конкурирующая 165, 176 органических 132 сл,  [c.342]

Существенное влияние на ингибирование может оказывать пространственное строение молекул органических ингибиторов. Поскольку радиус действия химических сил между адсорбированной молекулой и поверхностью металла мал [75], то это требует минимальных стерических помех. Поэтому при адсорбции, например аминов, стерические помехи будут возрастать от первичных к вторичным и третичным аминам и, следовательно, эффективность защитного действия этих аминов будет убывать в ряду  [c.44]


Ингибитор ИФХАН-1 представляет собой производные низкомолекулярных аминов, которые способны значительно тормозить катодную реакцию восстановления кислорода. Это их действие связано с образованием на поверхности металла полимолекулярных слоев, затрудняющих диффузию кислорода к электроду. Преимущество ингибитора ИФХАН-1 перед чисто катодными ингибиторами — это способность замедлять и анодную реакцию за счет изменения энергетического состояния атомов металла на поверхности в результате адсорбции этих соединений.  [c.163]

Из данных табл. 2,6 видно, что электронная структура молекул ингибитора в свободном состоянии значительно отличается от структуры в адсорбированном состоянии. Изменение заряда атома азота в молекуле свободного амина по сравнению с зарядом в комплексе свидетельствует о том, что в комплексе заряд перераспределяется на атом железа, что соответствует донорно-акцептор-ной связи, в которой амин в отличие от хромат- и ванадат-ио нов является донором электронов. Этот вывод подтверждается и экспериментально по изменению контактной разности потенциалов при адсорбции аминов на железе (табл. 2,7).  [c.76]

Новым направлением в создании комбинированных ингибиторов можно назвать подбор смесей из органических (амины, пиридины и другие соединения) и неорганических (соли металлов) соединений [33].. Одной из причин повышения эффективности органического компонента является контактное осаждение ионов металлов на поверхности корродирующего металла (а это может происходить и при потенциалах менее отрицательных, чем равновесный потенциал этих ионов в данных условиях) 1165]. Осадок металла изменяет заряд поверхности, и по этой причине — условия адсорбции органического компонента смеси. Улучшение условий адсорбции можно прогнозировать на основе ф-шкалы Антропова с учетом знака заряда частиц органического компонента, потенциала нулевого заряда поверхности после осаждения на ней ионов металла, входящих в состав смеси, и величины потенциала коррозии. Практическое применение такие смеси нашли в качестве ингибиторов коррозии в химических источниках тока [166, 167].  [c.114]

Эффективным способом улучшения заш,итных свойств нефтепродуктов, применяемых в качестве консервационных или рабоче-консервационных материалов, является введение в их состав маслорастворимых ингибиторов коррозии. В настоящее время известно большое число соединений, применяемых для этой цели. Предложены соединения со свободной карбоксильной или гидроксильной группой, соли аминов, карбоновых и сульфокислот и др. Активные группы ингибиторов, обладающие определенным статическим и динамическим электронными эффектами, определяют дипольный момент молекулы, а следовательно, ее полярность и поляризуемость, что, в свою очередь, определяет процессы адсорбции и хемосорбции молекул ингибиторов коррозии на металле.  [c.128]


Эффект синергизма достигается при совместном введении в электролит производных пиридина или анилина, с галогенид- ионами. По повышению защитного действия галогенид-ионы можно расположить в ряд J", Вг", СГ, т.е. в последовательности, обратной изменению их энергии гидратации, Дж/моль 353 для СГ 319 для Вг и 268 для J , так как более гидратированные поверхностные комплексы с галоидом, например, с ионом хлора, легко теряют связь с атомами кристаллической решетки металла и переходят в раствор. Анионы с меньшей энергией гидратации, хемосорбируясь на поверхности металла, теряют гидратированную воду и приобретают свойства защитной пленки. Резко возрастает защитный эффект от введения -аминов и некоторых других ингибиторов катионного типа при наличии в кислой среде сероводорода, тогда как в аналогичной среде без сероводорода эти же соединения являются слабыми ингибиторами коррозии. В таких случаях адсорбированные на поверхности железа анионы СГ, Вг", J", HS выполняют роль анионных мостиков, облегчающих адсорбцию ингибиторов катионного типа.  [c.144]

Синергетический эффект H2S обычно объясняют тем, что адсорбированные на железе анионы HS выполняют роль анионных мостиков, облегчающих адсорбцию ингибиторов катионного типа R+. К последним принадлежат и амины, которые за счет реакции протонизации превращаются в органические катионы. В результате взаимодействия промежуточного комплекса Fe(HS ) с органическими катионами R+ на поверхности металла возникает относительно прочное поверхностное соединение Fe(H—S—R), которое, с одной стороны, не способно служить поставщиком протонов для катодного процесса, а с другой — затрудняет анодную реакцию ионизации металла. Кроме того, адсорбированные катионы ингибитора смещают фгпотенциал в положительную сторону, что также способствует замедлению реакции разряда ионов водорода.  [c.299]

В обзорной работе полемического характера (опубликована в 1954 г.) Хаккерман иМаркидес , критикуя теори]г катодного действия ингибиторов, продолжают отстаивать адсорбционную теорию в ее первоначальном виде, т. е. как теорию физической адсорбции ингибиторов на поверхности металла, и отвергают предположения о возможности процесса хемосорбции ингибиторов. Например, для аминов эти авторы считают, что наиболее прочная связь металла с ионом (на катодах) обусловлена силам  [c.50]

Для того чтобы вещество могло выполнять функцию ингибитора травления, оно должно иметь в общем случае одну или несколько полярных групп, посредством которых молекула могла бы присоединяться к поверхности металла. Обычно они представляют собой органические соединения, содержащие азот, амины, серу или группу ОН. Важное значение для эффективности ингибитора имеют размер, ориентация, форма молекулы и распределение электрического заряда в ней. Например, обнаружено, что коррозия железа в 1т растворе соляной кислоты замедляется производными тиогликолевой кислоты и З-меркаптонронионовой кислоты в степени, которая закономерно зависит от длины цепи соединений [32]. Возможность адсорбции соединения на поверхности данного металла и относительная сила связи адсорбции часто зависят от такого фактора, как заряд поверхности металла [33]. Катодная поляризация в присутствии ингибиторов, которые лучше адсорбируются при потенциалах более от-  [c.269]

Для замены ингибиторов углекислотной коррозии ИКИПГ-1, КО, АНПО и ряда других был создан новый ингибитор, получивший название СТ. В его состав входят алифатические амины (до 10%), диэтиленгликоль (до 30%) и флотореагент ВЖС (до 60%). Диэтиленгликоль является гомогенизатором тройной смеси, а также снижает температуру застывания. Его защитное действие как простого эфира проявляется в том, что, будучи десорбентом воды, диэтиленгликоль создает благоприятные условия для адсорбции основных компонентов ингибитора на поверхности металла. Механизм действия ингибитора СТ [146] можно упрощенно представить следующей схемой удаление воды с поверхности образование органических радикалов  [c.224]

Хемосорб1Щя ингибиторов существенно зависит и от природы металла. Например, гетероциклические амины, адсорбируясь на железе, являющемся переходным металлом, образуют прочные хемосорбционные пленки благодаря взаимодействию тг-электронов молекулы ингибитора с незавершенными Зб/-уровнями железа. В непереходных металлах такого взаимодействия не происходит, хотя положительно заряженная поверхность металлов в некоторой мере может ассимилировать, например, 7г-электроны и создавать тем самым специфическую адсорбцию дополнительно к электростатической.  [c.146]


К адсорбирующимся относятся и летучие ингибиторы. Это органические или неорганические, жидкие или твердые вещества с малым, но достаточным для обеспечения адсорбции давлением паров, которые обладают ингибирующей способностью. Находясь в эксплуатационной среде, они выделяют пары, которые контактируют с защищаемым металлом. Поскольку летучие ингибиторы действуют на рассстоянии и в газовой фазе, они вызывают огромный интерес. Большая часть из этих веществ представляет собой амины или соли аммония (нитриты, карбонаты). Их действие начинается сразу после испарения. Пары ингибитора растворяются в тонком водном слое, который образуется на поверхности металла даже в относительно сухой атмосфере. Насыщенная ингибитором пленка адсорбируется на поверхности металла и создает барьер между металлом и коррозионной средой, т. е. механизм действия этих ингибиторов является тоже адсорбционным.  [c.53]

Общепризнано, что первой стадией действия ингибитора является его адсорбция на поверхности металла. Дальнейшие стадии взаимодействия ингибитора с металлом протекают различными путями. При использовании (НДА), например, его действие заключается в физической адсорбции на окисной пленке с последующим распадом в адсорбционной пленке влаги на амин и азотистую кислоту [3]. При этом азотистая кислота усиливает естественную окис-ную пленку, а адсорбция амина гидрофобизует поверхность. Для других ингибиторов механизм действия совершенно иной. Действие солей аминов с нитробензойными кислотами основано на том, что  [c.80]

Большинство органических соединений, являющихся ингибиторами атмосферной коррозии, содержит в своем составе азот. Использование азотосодержащих соединений обусловлено присутствием в атоме азота необобщенной электронной пары, что обеспечивает более прочную адсорбцию азотосодержащей молекулы на металле. Однако существенным фактором адсорбции по атому азота является величина электронной плотности на атоме. Именно поэтому ароматические амины являются малоэффективными ингибиторами и практически не препятствуют атмосферной коррозии.  [c.81]

Применение аминов в чистом виде ограничивается в одних случаях высокой летучестью (моноэтаноламин, циклогексиламин), в других — нелетучестью и низкой растворимостью (октадецил-амин). Температурные пределы адсорбции и десорбции различных аминов также различны, что затрудняет их применение в чистом виде. Поэтому амины чаще всего применяют в виде солей с анионами, усиливающими защитное действие или ослабляющими нежелательные свойства аминов. Так, например, превращение моноэта-ноламина и циклогексиламина в карбонаты позволяет несколько снизить их летучесть. Применение нитрита циклогексиламина вместо амина позволяет сочетать защитное действие амина с пассивирующим действием нитрит-иона, что придает ингибитору высокую эффективность. Несмотря на высокую эффективность аминов для защиты черных металлов, большинство из них являются стимуляторами коррозии многих цветных металлов, особенно меди и ее сплавов. Поэтому для создания ингибиторов, защищающих одновременно черные и цветные металлы, необходимо нейтрализовать действие аминов, стимулирующих коррозию цветных металлов. Принципиальная возможность этого была ранее доказана при защите цинка тетраборатом моноэтаноламина [7].  [c.81]

Амины. Защитное действие аминов обычно связывается с их адсорбцией на поверхности металла, причем концентрация амина в среде редко превышает 0,2 г/л [202]. Адсорбционная способность органических веществ согласно [209] определяется электронной плотностью на гетероатоме. В аминах гетероатомом является азот. Отмечено [2il0], что циклические амины — более эффективные ингибиторы коррозии, чем алифатические у которых электронная плотность на атоме азота существенно меньше.,  [c.183]

Адсорбция и хемосорбция маслорастворимых ПАВ на поверхности металла, в частности, марлорастворимых ингибиторов коррозии, подробно изучена. В работах [18—20] дана классификация этих ингибиторов ингибиторы хемосорбционного типа— доноры электронов (сульфонаты, нитрованные масла), хемосорбционного типа — акцепторы электронов (амины, алке-нилсукцинимиды, имидазолины, соли некоторых органических кислот и аминов) и адсорбционного, экранирующего типа (жирные кислоты и их мыла, окисленный петролатум, сложные эфиры и др.). Сформулирован принцип получения комбинирован-  [c.74]

Ингибитор же выступает в основном в роли акцептора электронов, т. е. движущей силы анодной реакции, хотя, как уже указывалось, адсорбция катионов или молекул ингибитора облегчает защиту. Электронографическими исследованиями поверхности стали после воздействия нитробензоатов аминов не обнаружено никаких элементоргани ческих соединений, а зафиксировано лишь наличие на поверхности окисла железа более высокой валентности.  [c.54]

Осталось рассмотреть третий класс ингибиторов, который можно отнести к соединениям, отличающимся слабыми окислительными свойствами и имеющим общий анион типа МО . На рис. 2,19 представлена зависимость скорости коррозии стали от потенциала, который задавался электроду с помощью указанных ингибиторов. Как видно, вначале адсорбция некоторого количества пассивирующего агента приводит к смещению потенциала в положительную сторону и увеличению скорости растворения. Получается типичный участок анодной поляризационной кривой, характерный для активного растворения. Поскольку эти ингибиторы относятся к соединениям окислительного типа, можно было бы предположить, ЧТО смещение потенциала в положительную сторону, сопровождающееся увеличением скорости растворения, обусловлено, как и в случае рассмотренных выше нитробензоатов аминов, увеличением эффективности катодного процесса вследствие восстановления этих ингибиторов. Однако это не так. Метод внутренней поляризации с помошью ингибиторов или других химических соедине-  [c.59]


Тогда уменьшение электронной плотности на адсорбционном центре ингибитора должно снижать специфическую адсорбцию. От взаимодействия этих двух факторов и зависит ингибирующий эффект. Падение защитного эффекта аминов при снижении нук-леофильности заместителей (от аСО до а = 0) объясняется, вероятно, одновременным изменением физической адсорбции и поверхностной концентрации специфически адсорбированных частиц. Насколько это объяснение правомерно, сказать трудно, так как в основу рассуждений авторов положено, что потенциал нулевого заряда железа равен нулю, а это, как было выше указано, оспаривается многими исследователями не без оснований.  [c.150]

Защитные свойства производных пропаргилового спирта изучали Курбанов с сотр. [125]. Аминопроизводные тиоэфиров испытывали в качестве ингибиторов коррозии для стали в 10 н. соляной, серной и лимонной кислотах (табл. 6,15). При синтезе этих соединений авторы исходили из того, что введение в молекулу пропаргилового тиоэфира амино-группы, обладающей способностью адсорбироваться на металле, увеличит ингибирующее действие соединений. Однако опыты показали, что введение в молекулу тиоэфира гетероатома вместо ацетиленового водорода приводит к уменьшению защитных свойств соединений, хотя количество адсорбционно-активных центров у них больше, чем у исходного эфира. Отсюда авторы сделали вывод, что в процессе ингибирования коррозии у пропаргилового эфира главную роль играет концевая ацетиленовая связь и ее экранирование гетероатомом затрудняет адсорбцию.  [c.209]

На рис. 5Л0 представлены результаты опытов с этиламином и бутиламином. Обращает на себя внимание сходство кривых число оборотов — концентрация амина с изотермами адсорбции, что свидетельствует об адсорбционном механизме их действия. Бутиламин является более сильным ингибитором наво-дороживания, чем этиламин его ингибирующее действие мало падает с увеличением Дк, достигая 94% при с>0,01 моль/л и Дк=10 мА/см . Ингибирующее действие этиламина заметно падает с увеличением Дк-  [c.188]

На основании многочисленных исследований установлено, что эффективными ингибиторами кислотной коррозии металлов являются органические вещества, содержащие в качестве функциональных групп азот, серу или кислород [18]. Наибольшего внимания среди них заслуживают азотсодержащие соедияения — амины, производные пиридина, четвертичные соли пиридиновых ошований, а также некоторые технические ингибиторы, синтезированные на их основе. Ингибирующее действие этих соединений в существенной степени зависит от размера и строения органических молекул, характера их адсорбции на поверхности металла, защитных свойств образованных ими адсорбционных пленок и т. д.  [c.38]

Труднее представить себе обратную ориентировку молекул, так как маловероятно, чтобы полярная группа, имеющая большее сродство к воде, стремилась бы к адсорбции на поверхности металла, а гидрофобная часть молекулы, которую, наоборот, раствор стремится вытолкнуть на границу раздела, была бы направлена в сторону раствора. В пользу предположения об указанном характере ориентировки молекул говорит также известный факт отсутствия ингибирующего действия у низших представителей ряда первичных, ароматических и гетероциклических аминов очевидно, это указывает на незначительное сродство аминных полярных групп к металлу. Если даже допустить, что ингибитор при адсорбции повернут к поверхности металла аминной группой, то с увеличением длины алифатической цепи молекулы ингибитора нужно было бы ожидать меньшего, а не большего эффекта, потому что вода стремилась бы вытолкнуть гидрофобную часть молекулы к границе раздела фаз. В этом случае из-за возникновения изгибающего момента связи аминной группы с металлом должны были бы ослабевать, а ингибирующий эффект — уменьшаться. Однако опытные данные противоречат этому. Изложенные представления об ориентировке молекул на границе раздела металл — раствор кислоты позволяют более полно описать механизм действия органических ингибиторов коррозии.  [c.130]

Литература изобилует примерами, указывающими на прямую зависимость между прочностью такой связи и эффективностью ингибитора. Хаккерман и Кук [11] показали, что различные участки поверхности стального пороп]ка неодинаково адсорбируют алкил-карбоновые кислоты, амины, спирты и сложные эфиры определенные участки поверхности могут необратимо адсорбировать как кислоту, так и амин, тогда как другие участки обладают избирательным сродством либо к кислоте, либо к амину. Фудзии и Ара-маки [112] изучали связь между адсорбцией некоторых полярных органических соединений на металлах и их ингибирующей способностью. Используя в качестве неполярного конца молекулы прямой углеводородный радикал с 16 атомами углерода, они нашли, что амиды более эффективны, чем амины, а амины и амиды эффективнее кислот или спиртов. Амидные группы имеют наибольшую силу адсорбции, в то время как сила адсорбции других ингибиторов прямо пропорциональна их ингибирующей способности. Даниэл [113] сопоставил кислоты, сложные эфиры и спирты. Он нашел, что при данной длине цепи наибольшую адсорбцию проявляет кислота, наименьшую — сложный эфир, а спирт занимает промежуточное положение. Натан [114] показал, что наиболее сильно адсорбирующиеся соединения являются лучшими ингибиторами коррозии стального порошка, а наиболее слабо адсорбирующиеся — худшими.  [c.212]

Натан [114] нашел, что ароматические амины, содержащие больше одной группы, присоединенной к азоту, слабо адсорбируются и являются плохими ингибиторами коррозии. По данным изотерм адсорбции, наличие нескольких полярных групп не приводит к существенному увеличению адсорбции. Эйслер [122] изучал влияние ряда факторов на адсорбцию полярных органических ингибиторов коррозии. Он обнаружил, что в случае стеариновой кислоты адсорбция увеличивается со временем погружения, пере-  [c.214]

В присутствии поверхностно-активных анионов (Вг , 1 ) адсорбция аминов усиливается, и на ртути значение 0 достигает 0,9—1,0 [28]. В этом случае механизм действия ингибитора нельзя уже свести только к г )гэффекту наряду с ним необходимо учитывать и вклад блокировки в общее торможение.  [c.94]

Алкилэтилендиамины, алкил- и алкенилдиэтиламины и другие подобные амины, содержащие шесть и более атомов углерода в цепи, как ингибиторы кислотной коррозии стали проявляют довольно высокие защитные свойства, не зависящие от электронодонорных свойств аминов, их основности и площади, экранируемой одной молекулой при адсорбции [91]. Наличие кратной С=С-связи усиливает защитное действие аминов, но не благодаря изменению основности, т. е. способности образовывать аммониевые формы, а вследствие появления у таких аминов склонности к полимеризации и поликонденсации, улучшения их адсорбируемости.  [c.95]

Помимо алифатических, ароматических и гетероциклических аминов, широко известно применение в качестве ингибиторов иминов, амидов, лактамов, азолов и их производных [29—31, 33, 34]. Эффективность этих соединений также связйна с их адсорбцией за счет неподеленной электронной пары атома азота.  [c.98]

Эффективными ингибиторами кислотной коррозии являются органические соединения, содержащие тионовые группировки [139, 140] и различные производные дитиокарбаматов. При этом, если в работе [140] их действие связывают с адсорбцией самих соединений с образованием связи сера — металл, то авторы работы [141] обосновывают механизм вторичного ингибирования. Действительно, дитиокарбаматы в кислой среде образуют сероуглерод и вторичные амины  [c.108]

Замедлители травления имеют полярную группу или же некоторые специфические группы.Они содержат в органических соединениях N, амины, S и группу ОН . Размеры, ориентировка и электрический заряд молекулы влияют на ингибируюшие свойства. Возможность адсорбции и сила связи адсорбции часто зависят от такого фактора, как заряд поверхности металла [22—25]. Для ингибиторов, которые лучше адсорбируются при смещении потенциала от нулевого заряда поверхности в анодном направлении, катодная поляризация в присутствии ингибитора обеспечит лучшую защиту, чем соответствующая катодная защита или применение ингибитора отдельно. Это было показано Антроповым [26] для железа и цинка в серной кислоте, содержащей различные органические ингибиторы.  [c.219]


В ряде случаев эти два вида адсорбции могут протекать одновременно. Это может объяснить результаты Хакермана и Кука, которые сначала промывали порошок из стали растворами алифатической кислоты, амина или сложного эфира в бензине, а потом свежим растворителем при этом часть вещества могла вымыться, но часть оставалась адсорбированной. Коррозионная активность порошка (измеряемая временем, необходимым для выделения определенного объема водорода при помещении порошка в 4н. соляную кислоту) падала с увеличением количества адсорбированного вещества, что непосредственно указывает на то, что адсорбция уменьшает (но не прекращает) процесс коррозии. Они пришли к заключению, что кислоты и амины адсорбируются на различных участках и последовательная обработка реагентами обоих типов более эффективна, чем обработка одним видом ингибитора. Цепочки, состоящие приблизительно из десяти атомов углерода, дают лучший эффект более длинные цепочки являются менее эффе-  [c.168]


Смотреть страницы где упоминается термин Адсорбция ингибиторов аминов : [c.222]    [c.24]    [c.26]    [c.192]    [c.83]    [c.46]    [c.47]    [c.190]    [c.211]    [c.277]    [c.95]    [c.96]   
Ингибиторы коррозии (1977) -- [ c.75 , c.76 ]



ПОИСК



Адсорбция

Адсорбция ингибиторов

Амины

Ингибитор



© 2025 Mash-xxl.info Реклама на сайте