Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Микроскоп электронный просвечивающий увеличение

Раньше вид разрушения определяли визуально, невооруженным глазом или при малых увеличениях, теперь он определяется при помощи просвечивающего или сканирующего электронного микроскопа обычно при увеличениях 3000-5000. На рис. 15/г,б показаны типичные виды изломов (снятые на сканирующем микроскопе при увеличении 1000), характерные для вязкого ямочного разрушения.  [c.25]

В заключение отметим некоторые особенности электронных микроскопов. Основную часть выпуска промышленных образцов микроскопов составляют просвечивающие электронные микроскопы. Здесь есть конструкции как с одной промежуточной линзой, так и с двумя линзами. Обычно ускоряющая разность потенциалов равна 50—100 кВ, однако разрабатываются микроскопы, в которых ускоряющее напряжение достигает единиц мегавольт. Характерными для современных электронных микроскопов являются большой диапазон увеличений (220 —500 000><), наличие высококачественной системы регистрации, высокая стабильность блоков питания объективной и других линз, многокаскадная вакуумная система, разнообразие конструкций держателей образцов. Высокого совершенства достигли растровые электронные микроскопы (диаметр электронного пучка в них 5—10 нм).  [c.294]


Несмотря на недостатки электронного микроскопа, возможность изучения структуры металла при увеличении в 10—20 раз превышающем увеличение оптического микроскопа, обеспечивает электронному микроскопу все большее и большее распространение при научных исследованиях. Самым совершенным из существующих сейчас электронных просвечивающих микроскопов является универсальный микроскоп УЭМ-100. Он дает возможность исследовать объекты не только на просвет, но и на отражение и имеет электронно-оптическое увеличение до 25 000. Обычно операции при работе с электронным микроскопом производятся в следующей последова. тельности  [c.56]

В сравнении с просвечивающим электронным микроскопом использование растровых приборов дает ряд преимуществ. Во-первых, отпадает нужда в кропотливом и трудоемком изготовлении реплик и фольг, во-вторых, наиболее полно и достоверно фиксируется рельеф поверхности, в-третьих, исследованию доступна значительно большая площадь образца и, наконец, растровый микроскоп позволяет проводить изучения в непрерывном и широком интервале увеличений — от 20 и до 100 000 крат. К недостаткам растрового микроскопа можно отнести более низкую разрешающую способность в сравнении с разрешением, которое возможно на просвечивающем приборе.  [c.180]

Необходимость использования реплик в электронных микроскопах просвечивающего типа, с одной стороны, является затруднением, главным образом при снятии реплик с сильно шероховатых изломов. Реплики, полученные с поверхностей изломов, могут иметь большее количество дефектов, чем при обычных металлографических исследованиях, и давать так называемые лол<ные структуры, в ряде случаев напоминающие некоторые фрактографические рисунки [78], что необходимо иметь в виду. С другой стороны, метод реплик, несомненно, обладает рядом преимуществ, главное из которых — возможность применения оттенения для увеличения контрастности и рельеф-  [c.188]

Оптические микроскопы дают возможность различать в строении металла структурные элементы размером не менее 0,2 мкм (200 нм). Их полезное увеличение составляет до 1500—2000 раз. Существуют две разновидности электронных микроскопов просвечивающие (ПЭМ) и растровые (РЭМ).  [c.71]

Принципиально возможны два способа сте-реоЛогической реконструкции — непосредственная и статистическая. Непосредственная реконструкция методом последовательных сечений — построение пространственной. модели структуры на основании изображений ее на последовательных по глубине сечениях — шлифах в металлографическом световом микроскопе (СМ), эмиссионном (ЭМ) или растровом (РЭМ) электронном микроскопе или на репликах в просвечивающем электронном микроскопе (ПЭМ). Последовательные сечения с минимальным шагом получают строго параллельным последовательным механическим или электролитическим полированием образца. Некоторые характеристики пространственной структуры определяют непосредственно на модели, другие — на представляющем ее графе. Непосредственную реконструкцию. методом стереопар проводят в основном для поверхностей разрушения в РЭМ или ПЭМ и частиц, порошковой пробы в РЭМ, На изображениях одного и того же участка структуры, полученных с одинаковым увеличением при двух, различных углах наклона объекта относительно пучка электронов, измеряют горизонтальный параллакс (разность координат идентичных точек на двух изображениях) и на его-основе рассчитывают соответствующие высоты.  [c.73]


Исследованиями на просвечивающем электронном микроскопе выявлены промежуточные уровни чередования около 5,7 10 и 8,2 10 м. Поэтому помимо указанных уровней были определены промежуточные значения уровней между первым — вторым и вторым -г- третьим, которые удовлетворяют величине А Эти скорректированные уровни фактически совпадают с измеренными и составляют 5,75 10 и 8,28 10 м. Помимо этого на участке в среднем линейного увеличения шага усталостных бороздок наблюдаются наиболее часто еще такие уровни, соответствующие А>/8 1 2. 10"" 1,46 - 10- 1,77- Ю"" 2,14 10 " м. На участке последующего нелинейного подрастания средней величины скачка трещины по ее длине уровни чередования расположены ближе друг к другу, чем для указанной выше последовательности. Сопоставление выявленных уровней показывает, что. они удовлетворяют значениям А " А A Д /зз  [c.225]

Изучение строения изломов (фрактография) производится визуально при небольшом увеличении. Используют также методы сканирующей (на массивных образцах) и просвечивающей (реплики) электронной микроскопии с увеличениями в 1000, 4000 и 8000 раз.  [c.192]

Для электронно-фрактографических исследований наиболее широко используется интервал увеличений от 2000 до 15 000. Увеличения от 2000 до 5000 обычно применяют при обзорном анализе поверхности излома, большие увеличения — при более тонком исследовании. Изучение строения изломов в просвечивающем электронном микроскопе осуществляется с помощью реплик с поверхностей изломов, которые готовят в основном по той же методике, что и для обычных металлографических исследований. Используют два различных способа снятия реплик одноступенчатый способ приготовления угольных или оксидных реплик непосредственно с поверхности излома, при этом для отделения реплики излом нарушают двухступенчатый способ получения угольных реплик с промежуточных пластиковых, при этом поверхность излома не нарушается.  [c.350]

В обычном просвечивающем электронном микроскопе, в котором используются электромагнитные линзы, электронная пушка дает пучок электронов с энергией приблизительно от 20 кэВ до нескольких мегаэлектронвольт. Наиболее часто используется напряжение в 100 кэВ. Обычно освещение образца регулируется с помощью двух конденсорных линз. Эффективный размер источника порядка нескольких микрометров. Расходимость пучка на образце можно уменьшить вплоть до 10 рад, однако для освещения большой интенсивности, которое необходимо для больших увеличений, расходимость может достигать 10" рад, особенно если образец вводится в поле объективной линзы так, что переднее поле объектива действует как короткофокусный конденсор.  [c.287]

Следует отметить, что проведенное сравнение было сделано для фиксированного положения изображения и равных увеличений (так называемый случай фиксированного пучка в просвечивающей электронной микроскопии). Это означает, что различные линзы сравнивались при разных отношениях электродных напряжений. Действительно, гибридная линза всегда работает при более высоких отношениях напряжений, поэтому ее аберрации ниже.  [c.420]

Для изучения структуры металлов наибольшее распространение получили просвечивающие электронные микроскопы, при помощи которых исследуется не непосредственно поверхность металла, а слепо , полученный с этой поверхности (микрошлифа). Изготовление прозрачных для электронов тонких слепков — отпечатков, воспроизводящих структуру (обычно рельеф) поверхности микрошлифа, является делом несравненно более трудным, чем изготовление микрошлифов. Материалом для искусственных слепков могут служить органические (пластмассы, коллодий) и неорганические вещества (кварц и др.). Более высокими качествами обладают кварцевые слепки. Для искусственных слепков полезное увеличение современных электронных микроскопов обычно не превышает 20000 -30 ООО.  [c.56]

Теневое изображение объекта получается в теневых электронных микроскопах, в которых тонкий электронный пучок, облучающий образец, остается неподвижным. Разрешение теневого микроскопа определяется диаметром пучка и дифракционными явлениями. На образование изображения влияют различия в рассеянии и поглощении электронов разными участками образца. Яркость изображения значительно ниже, чем в просвечивающем микроскопе. Для ее увеличения возможно применение элек-тр он но- оптически х преобр азователей.  [c.186]

Реакция (84) энергетически не выгодна и возможна только при концентрации напряжений на двойниковом некогерентном фронте, что и имеет место в действительности. Реакция (84) дает набор испущенных дислокаций из некогерентных границ двойника с нулевым даль-нодействующим полем напряжений. Происходит увеличение длины двойниковой прослойки за счет эмиссии дислокаций из некогерентной границы. Деформация сдвига, произведенная испущенными дислокациями, эквивалентна деформации от исходной двойниковой границы, из которой они испущены. Существование эмиссионных дислокаций для о. ц. к. и г. п. у. кристаллов подтверждено экспериментами просвечивающей электронной микроскопии, наблюдаемым пробегом субграниц впереди двойника.  [c.145]


Просвечивающая электронная микроскопия может дать много информации о структуре покрытий и основного металла. Современные приборы позволяют получать изображения структур с увеличением до 200 000 крат и при этом проводить дифракционный анализ на выбранных участках. В просвечивающем электронном микроскопе изображение формируется фокусировкой дифрагированного потока электронов после прохождения его через образец. Используются очень тонкие объекты, причем толщина выбирается в зависимости от природы исс.ледуемого материала и используемого в микроскопе ускоряющего напряжения. В практической электронной микроскопии при нaпpянieнии 100 кВ толщина образцов обычно составляет 10 —10" мм. Разрешение (рабочее) отечественных микроско-  [c.160]

В работе [69] методом РСА исследовано влияние степени ИПД кручением на формирование твердого раствора в несмешиваемых системах Fe- u и Fe-Bi при консолидации интенсивной деформацией порошков Fe, Си и Bi. Исследование фазового состояния и параметров решетки позволило установить, что при степенях ИПД вплоть до 6,4 в сплаве Fe-20 ат. %Си формируется смесь двух неравновесных неоднородных твердых растворов на основе ОЦК Fe и ГЦК Си. Методом просвечивающей электронной микроскопии установлено, что распределение зерен по размерам носит бимодальный характер с максимумами, соответствующими 15 нм и 40 нм. Увеличение степени ИПД до значения 7,2 в данном сплаве привело к формированию пересыщенного неоднородного твердого раствора Си в Fe с одномодальным распределением зерен по размерам. Средний размер зерен составил 10 нм.  [c.49]

Характер изменения внутреннего строения стали, выявленный методом измерения электросопротивления, хорошо подтверждается результатами просвечивающей электронной микроскопии. Доминирующей особенностью микроструктуры, даже на ранних стадиях малоцикловой усталости при 650° С, является наличие дислокационных петель и постепенное скопление дислокаций вокруг выделений карбидов МегзСв (рис. 3, а, б). С увеличением числа циклов количество и размер карбидных частиц в стали Х18Н10Т также увеличивается (рис. 3, в, г). Анализ, выполненный на стереоскане, показал, что с увеличением числа циклов малоциклового нагружения при 650° С наблюдается коагуляция и перераспределение карбидных частиц в приграничные зоны это  [c.77]

Большой интерес представляет исследование поперечного сечения окисленных образцов. Здесь можно получить информацию об изменении структуры окалины по ее толщине, а также о структуре подокисной зоны. РЭМ дает возможность получить изображения с увеличением от 50 до 10000. Этот диапазон перекрывается в значительной степени с диапазоном увеличений светового микроскопа на нижней границе и просвечивающего электронного микроскопа на верхней границе. Эффективность применения растрового электронного микроскопа значительно возрастает в сочетании с использованием рентгеновского микроанализатора (РМА), который является составной частью современных РЭМ.  [c.25]

На рис. 2.1, 2.2 показаны типичные структуры консолидированных наноматериалов. Эти снимки получены с помощью высокоразрешающих и обычных просвечивающих электронных микроскопов (ПЭМ) (рис. 2.1, а, д—з рис. 2.2), высокоразрешающего сканирующего электронного микроскопа (рис. 2.1, 5, д) и атомносилового микроскопа (рис. 2.1, г) с увеличением в 20 000—3 500 000 раз (см. прил. 4 — 6). Столбчатая и пластинчатая структуры пленок представлены на рис. 2.1, в—д однофазные структуры — на рис. 2.1, а—г, ж многофазные — на рис. 2Л,д, е, з рис. 2.2.  [c.14]

Как известно [1 2], оптическая схема электронного микроскопа просвечивающего типа аналогична схеме обычного светового микроскопа (фиг. 1,а) конденсорная линза освещает узким пучком электронов объект, изображение которого с помощью двух электронных линз — объективной и проекционной — в увеличенном масщтабе переносится на конечный экран. Проходя через объект, расположенный вблизи апертурной диафрагмы объективной линзы, электроны взаимодействуют с атомалш объекта и отклоняются от первоначального направления падения пучка, т. е. рассеиваются , При этом у части электронов скорость меняется только по направлению, не меняясь по величине, что соответствует упругому рассеиванию. Скорость другой части электронов меняется и по направлению, и по величине, при этом часть энергии электронов затрачивается на возбуждение и ионизацию атомных электронов в объекте. Вследствие этого электроны, пройдя через объект, после рассеяния в нем имеют вид расходящегося пучка. При этом электроны, рассеянные на угол, больший апертурного угла объективно линзы, определяемого диаметром апертурной диафрагмы и ее геометрическим положением, поглощаются в толще материала этой диафрагмы, и в дальнейшем в формировании изображения, возникающего на экране электронного микроскопа, принимает участие только та часть рассеянных электронов, которая прошла через диафрагму (фиг. 1,6).  [c.5]

Первые электронные микроскопы, сконструированные по принципу просвечивающего оптического микроскопа, состояли из двух групп линз. Увеличение таких приборов можно было регулировать только с помощью проекционной линзы (при использовании для этой цели объективной линзы промежуточное изображение может выйти за пределы плоскости объекта проекционной линзы), т. е. в довольно узких пределах. Дело в том, что для каждой проекционной линзы существуют только одно оптимальное увеличение. В обмотке проекционной линзы выгодно иметь максимальное количество ампер-вИткон (не достигая при этом предела насыщения полюсного наконечника и максимально допустимого тока), поскольку максимальное возбуждение магнитных линз соответствует наименьшей сферической аберрации. Эго обусловлено тем, что при уменьшении фокусного расстояния  [c.16]

С помощью растровой электрониой микроскопии на приборе РЭММА-202 изучали структуру гальванических покрытий в широком диапазоне увеличений от 10 до 50000. Поскольку в растровом микроскопе достигается в сотни раз большая, чем в просвечивающем, глубина фокуса, это позволило наблюдать обьемное изображение структуры и объективно оценить пространственную конфигурацию ее элементов. в частности провести морфологический анализ изломов деталей с покрытиями и определить количественные характеристики пористости покрытия.  [c.15]


ЭЛЕКТРОННЫЙ МИКРОСКОП, прибор для наблюдения и фотографирования многократно (до 10 раз) увеличенного изображения объектов, в к-ром вместо световых лучей используются пучки эл-нов, ускоренных до больших энергий (30—100 кэВ и более) в условиях глубокого вакуума. Физ. основы электронно-оптич. приборов были заложены почти за сто лет до появления Э. м, ирл. матем. У. Р. Гамильтоном, установившим существование аналогии между прохождением световых лучей в оптически неоднородных средах и траекториями ч-ц в силовых полях. Целесообразность создания Э. м. стала очевидной после выдвижения в 1924 гипотезы о волнах де Вройля, а технич. предпосылки были созданы нем. физиком X. Бушем, к-рый исследовал фокусирующие св-ва осесимметричных полей и разработал магн. электронную линзу (1926). В 1928 нем. учёные М. Кнолль и Э. Руска приступили к созданию первого магн. просвечивающего Э. м. (ПЭМ) и спустя три года получили изображение  [c.886]


Смотреть страницы где упоминается термин Микроскоп электронный просвечивающий увеличение : [c.457]    [c.99]    [c.574]    [c.6]    [c.242]    [c.63]    [c.34]    [c.163]    [c.34]   
Металловедение и термическая обработка стали Т1 (1983) -- [ c.48 ]

Металловедение и термическая обработка стали Справочник Том1 Изд4 (1991) -- [ c.92 ]



ПОИСК



Микроскоп

Микроскоп электронный

Микроскопия

Микроскопия микроскопы

Микроскопия просвечивающая

Микроскопия просвечивающая электронная

Микроскопия электронная

Увеличение

Увеличение микроскопа

Увеличение микроскопа микроскопа



© 2025 Mash-xxl.info Реклама на сайте