Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вынужденные колебания Свободные диссипативная

Вынужденные колебания и диссипативные силы. Свободные колебания возникают в том случае, когда систему выводят из положения равновесия и затем предоставляют самой себе. Однако часто наблюдаются такие колебания, при которых внешние силы действуют на систему не только в момент = О, но и в дальнейшем. Частота такого вынужденного колебания определяется тогда не собственными частотами системы, а частотой возмущающей силы. Что же касается вычисления амплитуд таких колебаний, то эта задача сильно упрощается, если пользоваться главными координатами, полученными при исследовании свободных колебаний.  [c.368]


Уточненный анализ динамических процессов, происходящих в ДВС с учетом влияния системы регулирования, переменности приведенных моментов инерции кривошипно-шатунных механизмов, диссипативных и нелинейных факторов представляет собой задачу значительной сложности. Рассмотрение этих вопросов выходит за рамки настоящей книги. Обычно используемые в практике методы представления динамических характеристик ДВС для расчетов свободных и вынужденных колебаний достаточно полно изложены в специальной литературе [45 81].  [c.30]

Большое число диссипативных факторов, сложность и многообразие процессов, сопровождающих колебательные явления, приводят к тому, что при решении инженерных задач приходится прибегать к параметрам диссипации, полученным из эксперимента. В одних случаях экспериментом выявляются коэффициенты рассеяния отдельных элементов конструкции или сочленений, в других — некоторые приведенные значения, свойственные целому механизму, узлу и т. д. Параметры диссипации обычно определяются при моногармонических (т. е. одночастотных) колебаниях в режиме затухающих свободных колебаний либо в резонансном режиме при вынужденных колебаниях В первом случае мы имеем затухающий процесс (рис. 13), для которого коэффициент рассеяния может быть определен как  [c.39]

Последний подблок обработки результатов интегрирования (см. рис. 106, в) предназначен для оценки притока и рассеяния энергии в режиме вынужденных колебаний, а в режиме свободных колебаний для контроля точности моделирования динамических процессов. В подблоке сопоставляются первые производные полной энергии каждого из главных направлений пространства по времени, которые получены в результате моделирования, с соответствующими компонентами векторов диссипативных функций, не участвовавшими в операциях моделирования динамических процессов дискретных механических систем.  [c.356]

Вынужденные колебания 101—105 — Свободные колебания 63, 64 --диссипативная 39, 91—92  [c.349]

Если исходная информация о нелинейных диссипативных силах базируется на экспериментальных данных, полученных в режиме моногармонических колебаний, то при использовании этой информации для анализа других режимов требуются некоторые коррективы. Наиболее часто встречается случай, когда имеет место наложение двух колебательных процессов, из которых один (с частотой О) существенным образом зависит от диссипативных факторов, а другой (с частотой со) от них практически не зависит. Подобный случай наблюдается, например, в нерезонансных зонах моногармонических вынужденных колебаний, которым сопутствуют достаточно интенсивные свободные колебания при резонансе на определенной гармонике возбуждения и одновременном воздействии достаточно интенсивного возбуждения другой частоты при совместных параметрических и вынужденных колебаниях и в ряде других случаев.  [c.148]


В трех методах измерения динамических упругих свойств твердых тел, которые были рассмотрены, — свободные колебания, вынужденные колебания и распространение волн — упругие постоянные и внутреннее трение не могли бы быть выведены из измерений, если бы не были сделаны некоторые предположения о природе диссипативных сил и о линейности системы. Эти предположения заключались в том, что диссипативная сила пропорциональна скорости изменения деформации и что тип механического поведения не зависит от амплитуды деформации в области напряжений, использованных в опытах. Предполагая, что имеет место принцип суперпозиции Больцмана, можно было бы построить функцию памяти из серии экспериментов, проведенных во всей области частот, и отсюда сделать теоретический вывод о механическом поведении твердого тела, подверженного негармоническому воздействию напряжений.  [c.139]

В предыдущих обсуждениях свободных и вынужденных колебаний не рассматривалось влияние диссипативных сил, таких, как силы трения или сопротивления воздуха. В результате было получено, что амплитуда свободных колебаний остается неизменной с течением времени, но, как показывают эксперименты, амплитуда с течением времени уменьшается, и колебания постепенно затухают. В случае вынужденных колебаний из теории следует, что при резонансе амплитуда может возрастать беспредельно. Однако, как известно, вследствие демпфирования амплитуда при установившемся поведении системы всегда имеет некоторую конечную величину даже при резонансе.  [c.65]

В соответствии с выражением (5.11) были рассчитаны амплитуды вынужденных колебаний для режимов, включающих частотный диапазон от 200 до 500 об/мин при амплитудных значениях вынуждающих сил, полученных разложением технологического усилия в ряд Фурье. Диссипативные характеристики определялись на основе экспериментальных данных осциллограмм. В результате проведенных расчетов построен график коэффициента динамичности (рис. 5.1), где по оси ординат показано значение коэффициента, а по оси абсцисс - отношение частот вынужденных и свободных колебаний остова (несущей системы) ткацкой машины (станка).  [c.70]

Так же. как и при линейных колебаниях, можно различать нелинейно колеблющиеся системы — консервативные (ни из системы, нн в систему энергия не поступает), диссипативные (с течением времени происходи г уменьшение суммы потенциальной и кинетической энергий системы за счет перехода энергии в другие виды или за пределы колеблющейся системы) и, наконец, системы, в которые при их колебаниях поступает энергия. Различают также свободные и вынужденные нелинейные колебания. Однако вследствие нелинейности последние представлять в виде суммы общего решения однородного уравнения и частного решения неоднородного уравнения нельзя.  [c.220]

Исследуем теперь диссипативные свойства асинхронных электродвигателей и их влияние на развитие свободных и вынужденных крутильных колебаний в трансмиссии. При этом для упрощения математических выкладок рассмотрим сначала крутильные колебания на упрощенной эквивалентной схеме, показанной на рис. 7. 9.  [c.267]

Рассмотрим примеры диссипативных структур, самоорганизующихся в системах различной природы. А.И. Гапонов-Грехов и М.И. Рабинович [33] по аналогии с классификацией колебаний (свободные, вынужденные и автоколебания) классифицировали пространственно-временные структуры на свободные, вынужденные и автоструктуры.  [c.62]

J К небрежимо слабо проявляются на вынужденных колебаниях. ф При этом практически имеет место односторонняя корреляция, при которой процесс х через диссипативные факторы может повлиять на характер затухания свободных колебаний, а обратное Рис. 14. Од- влияние по сути дела отсутствует. С учетом отмеченного обстоя-номассовая тельства в работе [19] с помощью метода Ван дер Поля полу-колебатель- чена следующая формула, определяющая усредненное за пе-ная система риод 2я/А значение логарифмического декремента X  [c.42]


Определение термина диссипативная система см. в гл. I. О вынужденных колебаниях диссипативных систем см. в гл. V. Ниже приведены сведения, относящиеся к свободным затухающим колебаниям дисснпативпых систем с одной степенью свободы, когда нелинейность обусловлена только силами сопротивления, Предполагаем, что силы сопротивления обладают отрицательной мощностью, т. е. F- q > О, где q) — уравнение характеристики силы сопротивления (/ [ равно взятой с противоположным знаком обобщенной силе сопротивления). В пп. 1—4 рассмотрены случаи, когда силы сопротивления определяются только скоростями системы, а в п,. 5 — случаи, когда силы сопротивления зависят также от координат системы (позиционное трение, внутреь нее трение).  [c.150]

Однако в последнее время наметился иной и, по-видимому, более целесообразный принцип, согласно которому отдельные разделы теории колебаний выделяются по признаку физического единства рассматриваемых явлений. Следуя этому принципу, даже читатель, знакомый лишь с началами теории колебаний, легко выделит два достаточно самостоятельных раздела исследование свободных колебаний и исследование вынужденных колебаний. В первом пз этих разделов изучаются колебания автономных систем, нроисходяш ие под действием восстанав-лнваюш пх (и, возможно, диссипативных) сил около состояния равновесия таковы, например, колебания после нарушения равновесия простейших систем, изображенных на рис. 0.1 а — маятник, б — груз на пружине). Ко второму разделу относится изучение колебательных процессов, вызываемых и поддерживаемых вынуждающими силами, т. е. силами, заданными в виде явных функций  [c.8]


Смотреть страницы где упоминается термин Вынужденные колебания Свободные диссипативная : [c.300]    [c.69]    [c.95]   
Вибрации в технике Справочник Том 1 (1978) -- [ c.39 , c.91 , c.92 ]



ПОИСК



92, 102, 111, 121, 307, 309 —Вынужденные колебания 101—105 — Свободные колебания

Вязкость . Теория диссипативных сил. Одна степень свободы свободные и вынужденные колебания. Влияние трения на фазу колебаний

Колебания вынужденные

Колебания вынужденные свободные

Колебания свободные



© 2025 Mash-xxl.info Реклама на сайте