Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Химически активные сплавы

Для плавки химически активных сплавов удовлетворительная защита может быть получена с помощью приспособления,  [c.51]

Рис. 82. Установка для нахождения точек ликвидус химически активных сплавов Рис. 82. Установка для нахождения точек ликвидус <a href="/info/408526">химически активных</a> сплавов

При температуре выше 1200—1300° запаянные трубки применяться не могут, и сплавы в таких случаях должны нагреваться в соответствующих закалочных печах в вакууме или в инертной атмосфере, например аргоне. В этих условиях при нагреве небольшие образцы из химически активных сплавов загрязняются, особенно если горячая вакуумная трубка прони-  [c.199]

Химически активные сплавы  [c.239]

Химически активные сплавы 239, 267  [c.397]

Процесс ЭЛС в основном осуществляют в высоком вакууме (10" ... 10 Па), реже в диапазоне давления 1...10 Па. Высокий вакуум применяется как для эффективной генерации электронного пучка и беспрепятственного прохождения его (из-за отсутствия столкновения электронов с остаточными молекулами воздуха) до свариваемого изделия, так и для создания химически инертной среды, содержащей вредные примеси (кислород, азот и водород), в 10-100 раз меньшие, чем в аргоне высшего сорта при атмосферном давлении. Это позволяет получать сварные соединения высокого качества при сварке таких химически активных сплавов, как титановые, циркониевые, молибденовые, ниобиевые и др.  [c.415]

Тугоплавкие металлы (титан, ванадий, хром и др.) имеют высокую химическую активность в расплавленном состоянии. Они активно взаимодействуют с кислородом,азотом, водородом и углеродом. Поэтому плавку этих металлов и их сплавов ведут в вакууме или в среде защитных газов.  [c.173]

Электронно-лучевой сваркой изготовляют детали из тугоплавких химически активных металлов и их сплавов (вольфрамовых, танталовых, ниобиевых, циркониевых, молибденовых и т. п.), а также из алюминиевых и титановых сплавов и высоколегированных сталей. Металлы и сплавы можно сваривать в однородных и разнородных сочетаниях, со значительной разностью толщин, температур плавления и других теплофизических свойств. Минимальная толщина свариваемых заготовок составляет 0,02 мм, максимальная — до 100 мм.  [c.204]

Резка металлов осуществляется сжатой плазменной дугой, которая горит между анодом — разрезаемым металлом и катодом — плазменной горелкой. Стабилизация и сжатие токового канала дуги, повышающее ее температуру, осуществляются соплом горелки и обдуванием дуги потоком плазмообразующих газов (Аг, N2, Hj, NHJ и их смесей. Для интенсификации резки металлов используется химически активная плазма. Например, при резке струей плазмы, кислород, окисляя металл, дает дополнительный энергетический вклад в процесс резки. Плазменная дуга режет коррозионно-стойкие и хромоникелевые стали, медь, алюминий и другие металлы и сплавы, не поддающиеся кислородной резке. Высокая производительность плазменной резки позволяет применять ее в поточных непрерывных производственных процессах. Нанесение покрытий (напыление) производятся для защиты деталей, работающих при высоких температурах, в агрессивных средах или подвергающихся интенсивному механическому воздействию. Материал покрытия (тугоплавкие металлы, окислы, карбиды, силициды, бориды и др.) вводят в виде порошка (или проволоки) в плазменную струю, в которой он плавится, распыляется со скоростью - 100—200 м/с в виде мелких частиц (20— 100 мкм) на поверхность изделия. Плазменные покрытия отличаются пониженной теплопроводностью и хорошо противостоят термическим ударам.  [c.291]


Высокой химической активностью при сварке отличаются и другие цветные металлы алюминий, магний, медь, никель и сплавы на их основе. Качество их защиты обеспечивается инертными газами, а также специальными электродными покрытиями и флюсами.  [c.40]

Наконец, вакуум как защитная среда при сварке для целого ряда химически активных и тугоплавких металлов и сплавов обеспечивает значительно более высокие показатели свойств сварного шва, чем сварка в инертных газах (Аг и Не). Поэтому целый ряд сварных конструкций- из этих материалов (вольфрам, молибден, тантал, цирконий, титан и др.) изготовляют исключительно при помощи электронно-лучевой сварки.  [c.114]

Для сварки химически активных металлов (Ti, Zr, Nb и др.) употребляется аргон марки А (99,98% чистоты), для сварки алюминиевых и магниевых сплавов—аргон марки Б (99,95% чистоты), для сварки аустенитных сталей — аргон марок В и Г (99,9 и 95...97% соответственно). Для повышения чистоты применяемого аргона его следует пропустить через аппарат, содер-  [c.385]

Высокая химическая активность обусловливает необходимость плавки титана и его сплавов в вакууме или атмосфере инертных газов. В практике отечественных заводов преимущественно используют вакуумную плавку.  [c.302]

Выбор оптимальной величины разрежения (вакуума) в камере плавильно-заливочной установки определяется главным образом химической активностью жидкого титана по отношению к элементам, входящим в состав газовой атмосферы. Термодинамические расчеты и практический опыт показали, что давление в камере плавильно-заливочной установки в период плавки и разливки следует поддерживать на уровне, не превышающем 0,13 - 1,33 Па. В этом случае не происходит увеличения содержания в сплаве элементов, входящих в состав воздуха (азота, кислорода и водорода). Для создания вакуума все плавильно-заливочные установки оборудованы вакуумной системой, включающей комплекс вакуумных насосов, вакуум-проводы, вакуумные датчики, задвижки, вентили и т.д. Благодаря вакуумной системе в камере установки поддерживается требуемое разрежение и производится откачка газов из камеры с необходимой скоростью.  [c.304]

Внешняя среда может воздействовать на механические характеристики материала необратимо или обратимо. В последнем случае механические характеристики материала полностью восстанавливаются при удалении действующего на его поверхность вещества. Коррозионное растрескивание под напрял<ением связано с необратимым воздействием химически активной среды и может вызвать переход от пластичного разрушения к хрупкому даже у материалов и сплавов с г. ц. к. решеткой, которые нельзя перевести в хрупкое состоя- ние другими способами.  [c.435]

Пружины, работающие в химически активной среде, изготовляют из цветных сплавов.  [c.536]

Сплав АЛ2 обладает относительно высокой коррозионной стойкостью, которая позволяет использовать его для изготовления изделий, работающих в контакте с химически активными средами.  [c.73]

В табл. 48 приводятся сведения о коррозионной стойкости сплава АЛ2 в различных химически активных средах.  [c.73]

Область применения сплава АЛ2. Сплав АЛ2 применяется для изготовления деталей испытывающих ударные нагрузки тонкостенных деталей сложной конфигурации, при литье в землю, кокиль и под давлением деталей, работающих в контакте с некоторыми химически активными средами, в частности деталей судовой арматуры.  [c.75]

Область применения сплава АЛ8. Сплав АЛ8 применяется для изготовления деталей, несущих высокие статические и ударные нагрузки, работающих в контакте с химически активными средами.  [c.88]

Область применения. Сплав ВИ-11-3 применяется для изготовления деталей 1) отливаемых под давлением 2) работающих в контакте с химически активными средами.  [c.101]

Рассмотрим состояние поверхности охлаждаемой стенки, работающей в расплаве. При этом ограничимся расплавами, компоненты которых при рабочей температуре не вступают в химические соединения с материалом стенки. Металл стенки может быть покрыт слоем оксидов или более сложных соединений различного происхождения. Они могли существовать на его поверхности до появления расплава или образоваться за счет кислорода, растворенного в расплаве. При относительно высокой химической активности жидкого металла возможен и обратный процесс — восстановление оксидов, имевшихся на стенке. Так, например, в процессе плавки в окисленном медном тигле сплавов лития поверхность тигля очищается до металлического блеска.  [c.12]


Судя по диаграммам пластичности, температурный интервал штамповки прессованного и отожженного ниобия находится в пределах 1200—1800° С, однако при этих температурах ниобиевые сплавы обладают высокой химической активностью к взаимодействию с газами. Образование газонасыщенного слоя приводит  [c.161]

Созданию высокой химической активности в вершине трещины содействует и механический фактор. Как известно, механические напряжения в вершине трещины очень высоки. Даже при низких значениях интенсивности напряжений материал в вершине трещины находится под действием напряжений, близких к пределу текучести. Это создает благоприятные условия для прохождения в вершине трещины локальных деформаций, в результате чего на кромках ступеней сдвига (в местах выхода дислокаций на поверхность) плотность анодного тока может резко увеличиваться. Оба фактора не только способствуют повышению плотности анодного тока, но и содействуют в этом друг другу. Например, если структура и состав сплава таковы, что в нем имеются выделения по границам зерен, отличающиеся по электрохимическим характеристикам от матрицы, то потенциальная чувствительность к межкристаллитной коррозии может быть реализована путем прохождения в вершине трещины пластических деформаций, разрушения пассивной пленки и активации анодных процессов по границам зерен. Это же положение относится в полной мере и к сегрегациям внутри твердого раствора, когда суще-  [c.57]

Титану и его сплавам свойственна высокая химическая активность. Поэтому на их поверхности при выдержке на воздухе или в любой другой среде, содержащей свободный кислород, очень быстро образуется тонкая бездефектная оксидная пленка, прочно связанная с основным металлом. Оксид, образующийся на ювенильной поверхности титана на воздухе или в коррозионной среде, был идентифицирован как тетрагональная модификация диоксида титана —рутил. Толщина пленки оксида образовавшегося при 20°С на воздухе или в среде, как правило, находится в пределах 0,40-0,60 нм. До тех пор, пока пленка имеет малую толщину, она прочно связана с матрицей и не имеет дефектов на границе оксид—металл, вследствие чего она сохраняет достаточно высокую пластичность и деформируется вместе с металлом. В местах сильной локализации пластической деформации, где происходит разрыв пленки, практически мгновенно образуется новая защитная пленка тоже без дефектов на границе оксид—металл. Это происходит при отсутствии тормозящих факторов.  [c.59]

Титан и его сплавы относятся к числу химически активных материалов. В электрохимическом ряду напряжений титан находится между магнием, алюминием и бериллием, нормальный потенциал реакции Т -> - Тр +2е, отнесенный к нормальному водородному элементу, равен — 1,75 В, в то время как электродные потенциалы магния и алюминия равны соответственно —2,37 и —1,66 В. При этом высокая химическая активность титана сочетается с исключительно высокой коррозионной стойкостью. Последнее объясняется наличием на поверхности тонкой практически бездефектной пленки оксидов, мгновенно образующихся  [c.114]

Если исследуются химически активные сплавы, то может быть применена такая же установка, но тигель в этом случае помещают в кварцевой трубе, нижний конец которой запаян, как показано на рис. 82. Верхний конец трубы за1крывают резиновой пробкой, через которую проходит стеклянная трубка с двухходовым краном (см. рис. 82, а), с помощью которого труба может быть откачана и заполнена инертным газом, например азотом или аргоном.  [c.148]

Микроскопическая металлографии для определения солндуса 194, 193 Микроскопическая металлография легкоплавких сплавов 240 Микроскопическая металлография преимущества 236 Микроскопическая металлография структур распада 220 Микроскопическаи металлография устранение рельефности 241 Микроскопическая металлография химически активных сплавов 239 Микроскопическая металлография хрупких сплавов 237 Микроскопическая металлография чувствительность 227 Микроскопическая металлография экспериментальные методы 221 Микроскопическая металлография электролитическая полировка и травление 243  [c.394]

В промыншенпости все более широкое применение находят тугоплавкие и химически активные металлы и сплавы. Поэтому для их сварки необходил[о применять источники с высокой концент рацией теплоты, а для защиты расплавленного и нагретого ме талла использовать среды, содержащие минимальное количество водорода, кислорода и азота. Этим условиям отвечает сваркя электронным лучом.  [c.67]

Отсутствие насыщения расплавленного и нагретого металла газами. Наоборот, в целом ряде случаев наблюдается дегазация мета.тла юна и повышение его пластических свойств, В резу [ьтате достигается Bi.i oKoe качество сварных соединений па химически активных металлах и сплавах, таких как ниобий, цирконий, титан, молибден и др. Хоро[иее качество электронно-лучопой сварки достигается также на низкоуглеродистых, кор-  [c.67]

Наилучшим решением является применение коррозионно-стойких ма-териалов (нержавеющих сталей, титановых сплавов). Металлонагруженные детали, соприкасающиеся с химически активными агентами, целесообразно изготовлять из химически стойких пластиков (полиолефины, фторопласты).  [c.33]

Сварка титана и его сплавов (ВТ1 ВТ5 ВТ15 ОТ4) чрезвычайно осложнена исключительной химической активностью титана. Титан реагирует с кислородом, азотом, углеродом, водородом, и наличие этих соединений приводит к резкой потере пластичности металла сварного соединения.  [c.388]

Вместе с тем сравнительные исследования режущих свойств модифицированных твердосплавных инструментов выявили высокие потенциальные возможности комплексной обработки на основе износостойких покрытий с использованием пучков заряженных частиц. Имплантация ионами химически активных элементов приводит к существенному повышению износостойкости инструментальных твердых сплавов, что связано с формированием твердых, термоустойчивых химических соединений в поверхностных слоях покрытий. Другие эффекты модификации связаны со снижением пористости покрытий, а также с устранением отрицательного влияния на прочностные характеристики капельной фазы, что подтверждается улучшением режущих свойств твердых сплавов с покрытием после модификации ионным пучком состава Al -N , имеющей целью образование фаз по типу TiAl3. Весьма перспективна комплексная обработка с использованием в качестве износостойкого покрытия нитрида гафния. Однако превышение дозы свыше  [c.230]


К тугоплавким сплавам относятся сплавы на основе титана, вольфрама, молибдена, ниобия, ванадия. Эти сплавы имеют высокую температуру плавления (1700...3500 °С) и отличаются повышенной прочностью при высоких температурах. Как конструкционный материал чаще используют титановые сплавы. Для фасонных отливок применяют сплавы ВТ1Л, ВТ5Л, ВТ6Л, ВТЗ-1Л и др. Литейные свойства титановых сплавов характеризуются малым интервалом температур кристаллизации и высокой химической активностью по отношению к окружающей среде и формовочным материалам.  [c.49]

Коррозионная стойкость сплава АЛ8. Алгоминиевомагниевым сплавам, в том числе сплаву АЛ8, свойственна наиболее высокая коррозионная стойкость (срав- [ительно с другими алюминиевыми литейными сплавами), которая позволяет спользовать, в частности, сплав АЛ8 для изготовления изделий, работающих а контакте с химически активными средами (см. табл. 59).  [c.87]

Гарнисажные печи сыграли большую роль в развитии современной металлургии ряда химически активных и тугоплавких металлов, в частности титана. Однако они не смогли полностью решить задачу получения сплавов без загрязнений. Дело в том, что в ряде случаев после нескольких плавок химический состав гранисажа заметно меняется. Кроме того, в него внедряются примеси, взвешенные в расплаве, а в случае удержания гарнисажа в охлаждаемом снаружи графитовом тигле (что во многих случаях необходимо для обеспечения нужного теплового баланса) - также и за счет контакта гарнисажа с графитом. В дальнейшем благодаря массообмену между расплавом и гарнисажем загрязненность последнего может сказаться на качестве металла дальнейших плавок. При плазменном нагреве проявляется также загрязнение расплава, вызываемое эмиссией в плазменную струю материалов конструкционных элементов плазмотрона.  [c.8]

Использование ИПХТ-М наиболее целесообразно для следующих процессов выплавки сложнолегированных сплавов с большим содержанием компонентов, сильно различающихся физическими свойствами рафинировочной плавки химически активных и тугоплавких металлов получения высококачественных фасонных отливок металлотермического восстановления металлов из их соединений (оксидов, фторидов, хлоридов и Т.П.) переработки отходов химически активных металлов и их сплавов направленной кристаллизации металла при непрерывном получении слитка получение металлических порошков и др.  [c.55]

Таким образом, исследования показали, что изменение химического o taвa сплавов при кажущейся неизменности фазового состава и структуры может привести к образованию химически активных концентрационных неоднородностей внутри а- или /5-твердых растворов, не выявляемых традиционными методами анализа (ни рентгеноструктурным, ни электронномикроскопическим), оказывающих решающее влияние  [c.123]

Учитывая высокую химическую активность аг -фазы, ее влияние на анизотропию характеристик разрушения наиболее резко должно было проявиться при проведении испытаний в коррозионной среде. Автор работы [88] показал, что увеличение содержания алюминия в сплаве Т1—6 % А1 —4 % V с призматической текстурой в пределах марочного состава при проведении испытаний в 3 %-ном растворе МаС1 приводит к резкому снижению вязкости разрушения поперечных образцов без заметного изменения продольных образцов.  [c.130]


Смотреть страницы где упоминается термин Химически активные сплавы : [c.204]    [c.193]    [c.210]    [c.394]    [c.395]    [c.121]    [c.37]    [c.120]    [c.218]    [c.222]    [c.115]   
Диаграммы равновесия металлических систем (1956) -- [ c.239 , c.267 ]



ПОИСК



Микроскопическая металлография химически активных сплавов

Рентгеновская Металлография химически активных сплавов

Химическая активность

Химически активные сплавы э * выплавка



© 2025 Mash-xxl.info Реклама на сайте