Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Излом усталости

Излом по этому сечению имеет весьма характерную для явления усталости поверхность. На фиг. 185 изображен излом усталости оси, сломавшейся в шейке. Из фигуры следует, что трещина усталости постепенно распространялась от места ее возникновения  [c.305]

Кроме слоистой поверхности, излом усталости характеризуется в некоторой своей части областью резко выраженной зернистости. Эта область получается при окончательном хрупком разрушении детали под влиянием надреза, каким является возникшая трещина.  [c.306]


Предел выносливости обычно падает с повышением температуры. При понижении же температуры от 20° до —183° - --193° предел выносливости увеличивается у некоторых сталей более чем вдвое. По излому можно определить, является ли поломка детали результатом усталости металла. На фиг. 146 показан тн-пичный излом усталости стального штока парового молота. Как видно из фигуры, усталостный излом имеет две ясно выраженные зоны зону, получившуюся внезапно в момент окончатель-  [c.173]

Фиг. 146. Излом усталости стального штока парового молота (Е. Г. Карцев). Фиг. 146. Излом усталости стального штока <a href="/info/107372">парового молота</a> (Е. Г. Карцев).
Затем нагрузка постепенно снижается и достигается то максимальное переменно излом усталости,  [c.121]

Излом детали от усталости имеет характерный вид (рис. 553). На нем почти всегда можно наблюдать две зоны. Одна из них А) — гладкая, притертая, образованная вследствие постепенного развития трещины другая (В) — крупнозернистая, образовавшаяся при окончательном изломе ослабленного развившейся трещиной сечения детали. Зона В у хрупких деталей имеет крупнокристаллическое, а у вязких — волокнистое строение.  [c.589]

Для того, чтобы не допустить усталостного выкрашивания рабочих поверхностей зубьев закрытых зубчатых передач, выполняется проектный расчет на усталость по контактным напряжениям. Определив на основе этого расчета размеры колес и параметры зацепления, выполняют затем проверочный расчет на усталость зубьев по напряжениям изгиба, чтобы установить,не появляется ли опасность усталостного разрушения зубьев, приводящая к излому. Как правило, такая проверка показывает, что напряжения изгиба в зубьях, рассчитанных на контактную прочность, оказываются ниже допускаемых. Тем не менее при выборе слишком большого числа зубьев колес или применении термохимической обработки поверхностей зубьев до высокой твердости (выше НРС 45) опасность излома зубьев может возникнуть. Для предотвращения этого следует размеры зубьев определить из расчета их на усталость по напряжениям изгиба.  [c.449]

Излом детали от усталости имеет характерный вид (рис. 575). На нем почти всегда можно наблюдать две зоны. Одна из них (Л) — гладкая, притертая, образованная вследствие постепенного развития трещины другая В) — крупнозернистая, образовавшаяся при окончательном изломе ослабленного развившейся трещиной сечения  [c.653]


Усталостное разрушение. Происходит при циклическом (повторном) нагружении в результате накопления необратимых повреждений. Излом макроскопически хрупкий, однако, у поверхности излома материал существенно наклепан. Различают усталость и малоцикловую усталость.  [c.18]

Трещины усталости в изделии, как правило, имеют местный характер и не затрагивают материала конструкции в целом. Тем не менее, во многих случаях развитие трещин усталости — очень опасное явление, которое может привести к серьезной катастрофе. Так, трещины усталости могут вызвать излом оси железнодорожного вагона и быть причиной железнодорожной катастрофы. Поэтому необходимо разработать такие методы расчета, которые обеспечивали бы безопасную работу при переменных напряжениях. Особенно это важно в машиностроении.  [c.130]

Излом зубьев. Различают два вида излома зубьев. Излом от больших перегрузок, а иногда от перекоса валов и неравномерной нагрузки по ширине зубчатого венца (рис. 9.23,а) и усталостный излом 1, происходящий от длительного действия переменных напряжений изгиба Стр, которые вызывают усталость материала зубьев. Усталостные трещины 2 (рис. 9.23, б) образуются чаще всего у основания зуба (иногда трещина распространяется к вершине зуба) на той стороне, где от изгиба возникают напряжения растяжения. Для предупреждения усталостного излома применяют колеса с положительным смещением при нарезании зубьев термообработку дробеструйный наклеп жесткие валы, увеличивают модуль и др.  [c.178]

Существуют два переходных участка с градиентом снижения твердости, непосредственно у излома и на некотором удалении от него (рис. 3.10). В пределах участка, непосредственно прилегающего к излому, имеет место зона процесса, которая по результатам измерения твердости не выделена в области многоцикловой усталости, поскольку ее размер очень мал. Однако в области малоцикловой усталости, когда объемы пластически деформированного материала существенно больше, она легко определяется, и первый градиент твердости, они-  [c.138]

При испытаниях на усталость (в особенности при изгибе в одной плоскости) в изломе часто наблюдаются широкие трещины, идущие перпендикулярно излому. Эти трещины возникают при доломе, идут, параллельно текстуре проката и, как правило, не указывают на дефектность металла (рис. 25).  [c.46]

На рис. 26 показан излом вала от внутреннего расслоения, на рис. 27 — от напрессовки. Строение излома отражает локальные условия разрушения в узкой области, прилегающей к поверхности. Условия образования трещины зависят от абсолютных размеров и распределения напряжений по сечению они определяются напряженным состоянием и степенью неравномерности нагружения (рис. 28). У больших образцов наблюдается малая зона усталости с блестящей поверхностью. В остальной части больших образцов поверхность более шероховатая, чем у. малых. Минимальная скорость распространения трещин наблюдается в фокусе усталостного излома. На конечном этапе она соизмерима со скоростью звуковых колебаний.  [c.46]

Несущая способность элементов конструкций включает в себя множество аспектов, связанных с разрушением материалов в результате растрескивания, потери устойчивости, усталости и ползучести при статическом и динамическом нагружении в условиях инертной или коррозионной окружающей среды и нагрева. Процесс разрушения волокнистых композиционных материалов еще более усложняется наличием множества независимых и взаимно накладывающихся форм разрушения, таких в частности, как излом волокон, потеря устойчивости отдельных волокон, рас-  [c.63]

Рис. 113. Разрушение детали при контактной усталости а — трещина в месте контактного повреждения. XS б—излом. Х7 Рис. 113. Разрушение детали при <a href="/info/34007">контактной усталости</a> а — трещина в месте контактного повреждения. XS б—излом. Х7

Рнс. 137. Излом термической усталости образца нз сплава АК4-1 при 185 20 С, Х12  [c.167]

Таким образом, с помощью испытания одной серии усталостных образцов исследуется вся область существования трещин от их возникновения до развития на все сечение образца (излом). По точкам, характеризующим полное разрушение образца, строится кривая малоцикловой усталости по излому, а по нижней границе точек, характеризующих наличие усталостных трещин, строится кривая трещинообразования. Одновременно определяются ограниченные пределы выносливости по излому и по трещинообразованию на выбранной базе испытаний.  [c.293]

Методом фрактографического анализа исследовали поверхности разрушения образцов, испытанных при различных температурах как при растяжении, так и при усталостных испытаниях. Обсуждение полученных результатов и большое количество фрактограмм, снятых с образцов основного и сварного металла, опубликованы в работах [2—7]. В общем, преобладающим типом разрушения образцов из указанных нержавеющих сталей при перегрузках был вязкий ямочный излом, начинавшийся от небольших включений карбидов или мелкой пористости. На поверхностях разрушения усталостных образцов, испытанных для определения скорости роста трещины усталости, наблюдались зоны смешанного строения, включая мелкие и крупные усталостные бороздки, вязкий отрыв, скол и образование вторичных интеркристаллитных трещин.  [c.246]

Обычно 70—90% общего числа циклов, необходимых для разрушения детали при неизменной амплитуде напряжений, деталь работает без видимой трещины, и только в оставшиеся циклы развивается трещина, приводящая к излому детали. В зависимости от величины переменных напряжений изменения в материале детали происходят различными темпами и число циклов повторения напряжений до разрушения оказывается тем меньше, чем выше напряжения. В тех случаях, когда происходят изменения свойств материала детали в условиях эксплуатации под действием высоких или низких температур, коррозии и других факторов, сопротивление усталости может резко измениться.  [c.223]

Рис. 3-16. Излом от усталости вала дымососа котла ТП-110 блока мощностью 300 Мет (вал изготовлен из трубы). Рис. 3-16. Излом от <a href="/info/122146">усталости вала</a> дымососа котла ТП-110 блока мощностью 300 Мет (вал изготовлен из трубы).
Усталостное разрушение наблюдается у таких деталей, как валы, оси, шатуны, пружины, рессоры и др., которые работают в условиях многократно повторяющихся переменных нагружений (растяжение—сжатие). Для того чтобы установить способность металлов работать в условиях многократных повторно или знакопеременных нагрузок, определяют их предел выносливости (или усталости). Пределов выносливости (усталости) называют максимальное напряжение, которое выдерживает материал, не разрушаясь, при достаточно большом числе повторно-переменных нагружений (циклов). Для стальных образцов эту характеристику устанавливают при 10 млн циклов, для цветных металлов — при 100 млн циклов. Предел Рис. 2.3. Излом усталост- ВЫНОСЛИВОСТИ обозначают греческой буквой ного образца И измеряют В паскалях.  [c.20]

В различных деталях машин микротрещины появляются и развиваются с поверхности преимущественно в сечениях с резкими изломами линий контура (например, при наличии надрезов, отверстий, раковин и т. п.). Излом усталости состоит из двух характерных зон крупнозернистой, получившейся в момент разрушения образца, и мелкозернистой (фарфоровидной), образовавшейся в результате трения металла в местах трещин и надрывов при многократных изменениях напряжений. Из сказанного следует, что статическая прочность не может характеризовать выносливость металла при переменных нагрузках.  [c.55]

Способность металла сопротивляться усталости называется выносливостью. Причиной усталости металлов являются сдвиги, которые возникают в кристаллических зернах, расположенных наименее выгодно в металле по отношению к действующим силам. Появившиеся сдвиги способствуют образованию микротрещин, которые под влиянием повторной или знакопеременной нагрузки постепенно увеличиваются и, доходя до плоскостей спаянности зерен, распространяются по этой границе. Излом усталости (рис. 33) С0СТ01ИТ из двух ясно выраженных зон наружной п внутренней. Наружная зона 1 имеет фарфоровидную поверхность— это зона постепенно развивавшейся трещины для внутренней зоны 2 характерно зернистое строение. Это — зона мгновенного разрушения. Явления усталости возникают при переходе предела выносливости. Пределом вынос.швости называют то  [c.54]

На рис. 74 приведены изломы усталости- Излом усталости характеризуется наличием участка с очень мелким строением фарфоровидный излом) по периферия образца наряду с более крупнокристаллическим внутри образца.  [c.117]

После того как трещина достигнет такой величины, что сечение тела заметно ослабнет, происходит внезап-. иый излом. Поверхность этого излома имеет всегда вид хрупкого излома. Вид поверхности излома при усталости очень характерен. На рис. 197, а и б показан такой излом. Хорошо видны две зоны первая зона с гладкой притертой поверхностью и зона хрупкого окончательного излома. Место возникновения первоначальной трещины  [c.346]

Малоциклозую усталость называют также статической выносливостью, прочностью при повторных статических нагрузках. Изломы низкочастотной малоцикловой усталости чаще всего (для конструкционного материала высокой и средней прочности) имеют типичную усталостную зону и по внешнему виду могут не отличаться от классических изло.мов усталости.  [c.236]

Повышение уровня напряжений при перекосе привело к меж-зеренному развитию трещин во фланце из магниевого сплава МЛЮ, работавшего при температуре 180°С. На наличие перекоса при сборке указывали неравномерные следы прилегания сопрягаемой детали по периметру фланца и различная протяженность трещин, развивающихся в разных местах детали. На поверхности излома наблюдались три зоны первая, окрашенная в темный цвет, имела межзеренный характер вторая, блестящая, незначительная по размеру — усталостный характер и третья — зона долома, образовавшаяся при вскрытии трещины. Излом имел многоочаговый характер. Очаги разрушения располагались у отверстия под шпильку и на поверхности фланца у границы контакта с сопрягаемой деталью. На поверхности излома в первой зоне наблюдались следы постепенного роста трещины, которым соответствовала разная интенсивность окраски поверхности излома. Расположение очагов разрушения, наличие постепенного роста трещины и межзеренный характер развития трещины дают основание полагать, что трещина вначале развивалась под действием статической нагрузки, а в дальнейшем по механизму усталости (рис. 70).  [c.96]


Вследствие образования множественных поверхностных очагов макростроение изломов круглых образцов, испытанных на термоусталость, отличается от макростроения усталостных изломов подобных образцов таким образом, как это схематично показано на рис. 136. В пределах усталостной зоны обнаруживается характерный усталостный рисунок в виде складчатости, нерезко очерченных расходящихся от очагов рубчиков и слабо выраженных концентрических колец, представляющих собой узкие полосы с более крупной, чем на соседних участках, шероховатостью. По мере продвижения трещины шероховатость в усталостной зоне постепенно увеличивается, зон с резко очерченными границами, т. е. резкого изменения характера излома не наблюдается. Эта черта отличает рассматриваемые изломы от высокотемпературных чистоусталостных, на которых, как правило, резко выделяется начальная зона в форме глазка. Особым признаком излома при термоциклическом нагружении, отличающим его от излома механической усталости, является также большая сглаженность, нерезкость, некоторая оплавленность рельефа. Для алюминиевых сплавов этот макроскопический признак вида излома может быть основным, так как в остальном излом мало отличается от обычных усталостных (рис. 137).  [c.168]

Величину К с вычисляют по экспериментально найденной критической длине (глубине) трещины, при которой разрушение превращается из стабильного в нестабильное, и разрушающему максимальному брутто-напряжению материала. Критическая интенсивность напряжений является характеристикой микропластиче-ской прочности материала. Критическая длина (глубина) усталостной трещины при испытании лабораторных цилиндрических и натурных образцов из бурильных труб определялась по фрактографическому излому (размеру усталостного пятна), соответствующему началу стадии нестабильного роста трещины обобщенной диаграммы усталости, построенной феррозондовьш методом контроля.  [c.111]

В области предела выносливости находится в соответствии с уравнением (13) резкий излом, и предел усталости можно в соответствии с другими гипотезами объяснять как амплитуду напряжения, или амплитуду пластической деформации, при которой зародившаяся трещина критической длины о не распространяется. Сравнивая результаты вычисления с экспериментально определенной кривой усталости во всем диапазоне чисел циклов до разрушения, видим, что в области высокого числа цик.лов до разрушения будет играть значительную роль стадия зароящения усталостной трещины.  [c.18]

Результаты испытаний приведены в таблице, из которой видно, что сопротивление образованию трещин ыалоцикловой усталости и сопротивление разрушению при температуре 813 К мало изменяются после различных режимов термической обработки. Ограниченный предел выносливости но трещинообразованию исследованной ста.ли при этой температуре колеблется в интервале от 300 до 340 МПа, а ограниченный предел выносливости по излому — в интервале 380—440 МПа. При этом различие между указанными пределами при температуре 813 К гораздо меньше, чем при 623 К. Вместе с тем величины пределов по трещинообразованию при 813 п 623 К различаются незначительно. Следовательно, повышение температуры испытаний гораздо больше влияет на развитие трещины мало-цикловой усталости, чем иа ее образование.  [c.294]

Соверщенно недопустим в структуре цементованного слоя феррит. Наличие феррита, хотя и в незначительных количествах, приводит к усталостному излому детали, так как по прочности феррит — наименее слабая структура стали и по границе ферритных зерен могут возникнуть микротрещины, а затем трещины усталости.  [c.494]

Периодическое смачивание водой нагретых до 200°С образцов из стали 13Х12Н2МВФБА более чем на 20 % снижает ее условный предел выносливости. Дополнительное уменьшение предела выносливости при смачивании нагретых образцов объясняется образованием трещин по всей периферийной области. У стали, подверженной отпуску после закалки при 600 и 700°С, при температуре испытания 400°С предел выносливости снижается с 620 МПа соответственно до 500 и 440 МПа. Смачивание образцов, нагретых до 400°С, обусловило дополнительное снижение условного предела выносливости стали, подверженной отпуску при 600°С, на 10 %, а при 700°С — на 15%. При температуре испытания 400°С с периодическим смачиванием водой образцы имеют хрупкий многопластный излом в периферийной части в отличие от изломов образцов, полученных при высокотемпературном (400°С) испытании в воздухе. Зона зарождения трещины в воздухе представляет собой типичную картину усталостного разрушения. На отдельных фасетках просматриваются специфические для усталости металла бороздки, расстояние между которыми составляет до 0,01 мкм.  [c.108]

Строением однородна, to это свидетельствует о том, что излом не носит усталостного характера. Если напряжения в лопатках значительно превышают предел усталости, то поверхность излома имеет однородный характер с волокнистым или крупнокрнстал-  [c.210]


Смотреть страницы где упоминается термин Излом усталости : [c.243]    [c.601]    [c.306]    [c.58]    [c.147]    [c.147]    [c.356]    [c.121]    [c.55]    [c.349]    [c.118]    [c.97]    [c.209]    [c.468]   
Сопротивление материалов (1976) -- [ c.559 , c.567 ]

Металловедение и термическая обработка (1956) -- [ c.45 ]

Техническая энциклопедия Т 10 (1931) -- [ c.381 ]

Техническая энциклопедия Т 9 (1938) -- [ c.381 ]



ПОИСК



Зацариниая. Микрофрактографическое изучение изломов аустенитной стали, испытанной на малоцикловую усталость

Излом

Изломы при контактной усталости

Изломы при коррозионной усталости

Изломы при повторно-статическом нагружении (малоцикловая усталость)

Изломы усталости при высоких температурах

Практические меры по борьбе с изломами усталости

Строение изломов при усталости

Усталость



© 2025 Mash-xxl.info Реклама на сайте