Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Магниты Магнитные свойства

Сплавы алюминиевые — Температура плавления 71 --для литья под давлением — Температура плавления 71 --для постоянных магнитов — Магнитные свойства 455 --легкоплавкие — Температура плавления 71  [c.730]

Сталь для постоянных магнитов — Магнитные свойства 454 --трансформаторная — Характеристики 568  [c.730]

Хромистые стали по сравнению с углеродистыми обладают значительно большей прокаливаемостью, и поэтому из них изготовляют более крупные магниты. Магнитные свойства у этих сталей такие же, как и у углеродистых. Специальные магнитные сплавы обладают очень высокими магнитными свойствами, что позволяет изготовлять из них магниты небольшого размера, но обладающие большой мощностью. Магнитные сплавы очень тверды и хрупки и не поддаются обработке резанием. Магниты из этих сплавов изготовляют путем литья или спеканием из порошка.  [c.319]


В последнее время применяют плиты с постоянными магнитами, магнитные свойства которых возбуждают подачей в катушки сильных импульсов постоянного тока. В этих плитах нет движущихся частей, а ток питания при работе отключен. Размагничивание достигается подачей в катушки убывающего до нуля переменного тока. Плиты с постоянными электромагнитами обеспечивают давление на рабочих поверхностях до 0,8 МПа.  [c.137]

Хромистая сталь (1% С и 1,5 или 3% Сг) имеет приблизительно такие Hмагнитные свойства, что и углеродистая. Эти стали обладают значительно большей прокаливаемостью, и поэтому из них можно изготавливать магниты больших размеров.  [c.542]

Обогащение руды основано на различи.и физических свойств минералов, входящих в ее состав плотностей составляющих, магнитных, физико-химических свойств минералов. Промывка ру-д ы водой позволяет отделить плотные составляющие руды от пустой породы (песка, глины). Г р а в и т а ц и я (отсадка) — это отделение руды от пустой породы при пропускании струи воды через дно вибрирующего сита, па котором лежит руда пустая порода вытесняется В верхний слой и уносится водой, а рудные минералы опускаются. Магнитная сепарация основана на различии магнитных свойств железосодержащих минералов и частиц пустой породы. Измельченную руду подвергают действию магнита, притягивающего Железосодержащие минералы, отделяя их от пустой породы.  [c.23]

Специальные магнитные сплавы — малоуглеродистые сплавы Ре—N1—А1 с добавками Си (или Си и Со) — обладают весьма высокими магнитными свойствами, что позволяет изготовлять из них магниты большой мощности (рис. 15.14). Магнитные свойства этих сплавов усиливаются при старении после закалки. Магнитные сплавы весьма тверды, хрупки и не поддаются обработке резанием. Магниты из этих сплавов изготовляют литьем или спеканием из порошка.  [c.277]

Поле внутри воздушного зазора постоянного магнита должно характеризоваться высокой стабильностью во времени. Недостаточное постоянство магнитных свойств может быть обусловлено влиянием внешних магнитных полей и температуры.  [c.201]

В связи со склонностью хромистой стали к карбидному превращению ( порче ) хорошие результаты получаются пр и кратковременном нагреве стали перед закалкой. Закалка в воду обеспечивает хорошие магнитные свойства, однако, учитывая возможности коробления и образования трещин, предпочитают применять охлаждение в масле. Перед использованием в аппаратуре магниты из хромистой стали подвергаются старению. Рекомендуется следующая последовательность окончательной термической обработки  [c.215]


Магнитные свойства магнитов из сплава типа магнико улучшаются, если при затвердевании кристаллы вырастить  [c.224]

НИИ магнитов после отливки. Это приводит к повышению магнитных свойств.  [c.310]

Технология получения магнитов из РЗМ заключается в спекании их из порошков в присутствии жидкой фазы или литья. Жидкая фаза создается за счет того, что РЗМ берется в избытке. Магнитные свойства сплавов приведены в табл. 3.8.  [c.110]

Хорошие магнитные свойства некоторых металлокерамических композиций позволили их использовать для изготовления постоянных магнитов методом прессования порошка, состоящего из измельченных тонкодисперсных магнитотвердых сплавов, с последующим спеканием при высоких температурах. В результате такой технологии изделия получаются достаточно точных размеров и не требуют дальнейшей обработки. Металлокерамические магниты имеют высокую механическую прочность, но пониженные магнитные свойства по сравнению с литыми магнитами, что обусловлено в основном большим содержанием (до 30 %) немагнитного связующего вещества.  [c.131]

Отечественная промышленность выпускает одиннадцать марок металлокерамических магнитов (МК1—МКП), у которых коэрцитивная сила может быть 24—128 кА/м, остаточная индукция 0,48— 1,1 Тл, а запасенная магнитная энергия не более 3—16 кДж/м . Экономическая эффективность металлокерамических композиций, обладающих магнитными свойствами, существенно возрастает при массовом автоматизированном производстве магнитов небольших размеров и сложной формы.  [c.131]

Они хорошо обрабатываются в закаленном состоянии. При охлаждении на воздухе с 1200—1300° С или при отпуске возникает большая коэрцитивная сила. Сплавы применяются для небольших магнитов в особо ответственных приборах. Магнитные свойства сплавов Pt с Fe и Со приведены на фиг. 54. Магнитные характеристики сплава Pt и Со приведены на фиг. 55.  [c.441]

При работе с магнитными толщиномерами необходимо учитывать многочисленные факторы, влияющие на результаты измерений. К ним относятся колебания магнитных свойств покрытия или подложки, состояние поверхности, форма изделия и др. В значительной мере влияние этих факторов обусловлено размерами и формой магнита, топографией и напряженностью магнитного поля. В связи с возросшими требованиями к точности и надежности производственного контроля толщины покрытий резко возросли требования к их метрологическому обеспечению.  [c.61]

Резко улучшенные магнитные свойства сплавов обусловливаются не только составом, но и специальной обработкой —охлаждением магнитов после отливки в сильном магнитном поле.  [c.293]

Магнитные свойства сплавов для постоянных магнитов  [c.294]

В настоящее время применяют плиты с постоянными магнитами, магнитные свойства которых возбуждаются подачей в катушки сильных импульсов постоянного тока. Эти плиты не имеют движу-ш,ихся узлов, а ток питания при работе отключен. Размагничивание получается за счет подачи в катушки убываюш,его до нуля переменного тока. Плиты с постоянными магнитами обеспечивают удерживающую силу до 1,5 МПа (15 кгс/см ), такую же, как и электромагнитные приспособления.  [c.127]

Хромистые сталн (например, марки ЕХЗ) по сравнению с углеродистыми прокаливаются з)1ачительио глубже, поэтому из них изготовляют более крупные магниты. Магнитные свойства эгих сталей такие же, как и углеродистых. Хромокобальтовые стали (напри>лер, марки ЕХ5К5) имеют более высокую коэрцитивную силу—Не = = 90 Э.  [c.96]

Магнитные свойства сплавов Ni—Л1 в сильной степени зависят от массы магнита и его химического состава. Чем массивнее ма1нит, тем при данном химическом составе медленнее приходится его охлаждать, чтобы не  [c.545]

Применяют также сплавы N —А1 с добавками кремния (I—2%). Такие сплавы обладают очень высокой коэрцитивной силой (до 640 Э) при умеренной индукции (400—500 Гс) и пониженной критической скоростью охлаждения, что очень существенно при изготовлении массивных магнитов. Добавка меди к сплавам Fe—Ni—Л1 позволяет частично заменить дорогой никель и улучшить свойства сплава. Введение в сплав с 22% Ni до 6% Си повышает Не без снижения Вг. Наиболее высокие магнитные свойства достигаются при одновременном введении меди и кобальта. Последний повышает коэрцитивную силу и остаточную индукцию. Особое внимание следует уделить высококобальтовым сплавам (15—24% Со), которые подвергаются так называемой закалке в. иагнитном поле. Сущность этой закалки заключается в том, что нагретый до температуры закалки (около 1300°С) магнит быстро помещают между полюсами электромагнита (напряженность поля должна быть НС менее 120 ООО А/м) и так охлаждают до температуры ниже 500°С. Дальнейшее охлаждение проводят обычно па воздухе. После такой обработки магнит обладает резкой анизотропией магнитных свойств. Магнитные свойства очень высоки только в том направлении, в котором действовало внешнее магнитное поле в процессе закалки.  [c.546]


После такой обработки магнитные свойства сплавов становятся анизотропными, их магнитные характеристики (В,, (В//)тах) сильно 1103 )астают в направлении приложенного магнитного ноля (магнитная текстура). Термомагнитнон обработке подвергают сплавы, содержащие свыше 18 % Со. Кристаллическая текстура образуется в случае направленноп кристаллизации отливки магнита, при этом возникают столбчатые кристаллы, растущие в направлении [100], Это сильно повышает магнитные свойства, поскольку они зависят от кристаллографической ориентации ферромагнитных фаз.  [c.308]

Сплавы Fe - Ni - Al, содержащие 22 - 24% Ni и И - 14% А1, обладают высокими магнитными свойствами. В таких сплавах можно получить коэрцитивную силу 400 - 500 А/м при остаточной индукции 6000 - 7000 Гс. Из этих сплавов изготовляют мощные магниты для авиационных приборов и для кодовых замков (патент РФ № 2090724, авторы В.М. Паращенко, В.А. Новожилов, М.М. Рахманкулов).  [c.35]

Алюминий вводят также (до 5 - 6%) в жаростойкие сплавы, применяющиеся в качестве нагревательных элементов. (Гплавы, применяемые для изготовления постоянных магнитов и обладающие высокими. магнитными свойствами, содержат 12 - 15% А1.  [c.69]

Магниты с железными сердечниками. Стандартный магнит с железным сердечником типа используемых в большипство лабораторий, схематически изображен на фиг. 8. Он был сконструирован Вейссом [79] еще в 1907 г. U-образное ярмо Y изготовлено из углеродистой стали очень мягкой в отношении магнитных свойств. Ци-лпндрические полюса АА и ВВ изготовлены из того же материала полюсные наконечники А и В представляют собой усеченные конусы из кобальтовой стали, обладающей очень высокой намагниченностью насыщения.  [c.453]

Магнитиые методы контроля качества основаны на создании в ферромагнитных материалах магнитного потока, образующего поля рассеивания над дефектами, и регистрации данных полей с помощью магнитного поропша, магнитной ленты или определении магнитных свойств контролируемых изделий.  [c.190]

Кобальтовые сплавы имеют следующие магнитные свойства Я, = 19 900 а/м (250 а) В, = 1,05 тл (10 500 гс) и (ВЯ) ах = 4,0--4,8-10 дж/м [(1,0- 1,2) 10 гс. э]. Эффективность введения кобальта в сплавы для постоянных магнитов, возможно, обусловлена тем, что железокобальтовые сплавы имеют высокую магнитострикцию, которая вызывает возрастание коэрцитивной силы. Кроме того, при повышении содержания кобальта в твердом растворе магнитное насыщение возрастает [при 35% Со величина 4n7s больше на 0,25 тл (2500 гс), чем 4n/s чистого железа). Таким образом, с увеличением содержания кобальта в сплаве В, такая же, как и у обычной стали, либо при большом содержании кобальта несколько возрастает, а Не резко возрастает.  [c.216]

Первые железоникельалюминиевые сплавы (сплавы алии) были получены в 1932 г. Это очень хрупкий материал, совершенно не поддающийся механической обработке. Магниты получают только литьем. Литье. этого сплава представляет значительные трудности, так как сплав имеет очень большую усадку (—3%). Сплав состава 25% Ni, 12% А1, остальное Fe имеет следующие магнитные свойства = 39,8-10 а/м (500), == 0,5тл (5000 го) и = 4,8-10 дж/м (1,2-10 ГС. э).  [c.220]

Железо-никель-алюминиевые сплавы, как и железо-никель-алюминиево-медные и железо-никель-алюминиево-кобальтовые, используются для получения деталей и металлокерамическим способом. Этот способ особенно выгоден для изготовления мелких деталей массой от долей грамма до 30 г. Применение металлокерамической технологии решило задачу производства мелких деталей из сплавов, содержащих кобальт. Металлокерамическая технология обеспечивает при производстве деталей из этих сплавов меньше отходов вследствие отсутствия литейных дефектов, лучшей шлифуемости, большей механической прочности, однородности. При давлении спекания в чистом водороде 400—800 МПа при 1300° С металлокерамические магниты из железо-никель-алюминиепого сплава имеют плотность на 8—7% меньше, чем литые, и магнитные свойства, близкие к таковым у литых магнитов. Существуют два способа получения магнитов по металлокерамическому принципу.-В первом случае детали из смеси чистых порошков или их лигатуры прессуются в пресс-формах в два приема сначала при пониженных давлении и температуре, потом при полном давлении с последующим окончательным спеканием завершающей операцией является термическая или термомагнитная обработка. Второй способ заключается в изготовлении металлокерамических заготовок сутунок , из которых после термообработки и прокатки на полосы и  [c.310]

Так как металлокерамические магниты содержат поры, то их магнитные свойства уступают литым материалам. Как правило, пористость (3—5 %) уменьшает остаточную индукцию и магнитную энергию IFniax (на 10—20 %) и практически не влияет на коэрцитивную силу Яд. Механические свойства их выше, чем литых магнитов. Металлопластические магниты изготовлять проще, чем металлокерамические, но свойства их хуже. Металлопластические магниты получают из порошка сплавов ЮНД или ЮНДК, смешанного с порошком диэлектрика (например, фенолоформальдегид-ной смолой). Процесс изготовления магнитов подобен процессу прессования пластмасс и заключается в прессовании под давлением 500 МПа, нагреве заготовок до 120—180 °С для полимеризации диэлектрика.  [c.108]

Механические свойства металлопластических магнитов лучше, чем у литых, но магнитные свойства хуже, так как они содержат до 30 % по объему пеферромагнитного связующего диэлектрического материала В, меньше на 35—50 %, — на 40—60 %.  [c.108]

К недостаткам бариевых магнитов нужно отнести низкую остаточную индукцию, высокую хрупкость и твердость, а также значительную зависимость магнитных свойств от температуры. Кобальтовые ( рриты более температуростабильны.  [c.109]


Магнитнотвердые стали этой группы охватывают в основном хромистые, вольфрамовые и кобальтовые стали, которые приобретают повышенную коэрцитивную силу после закаливания на мартенсит. Помимо мартенсита после термообработки эти стали содержат. высокодисперсные карбиды. Наличие больших внутренних напряжений в основном предопределяет более высокую коэрцитивную силу, чем в обычных сталях. Хромистые стали отличаются от углеродистой стали присадкой хрома (до 3%) вольфрамовые н кобальтовые стали помимо хрома содержат соответственно присадки вольфрама (до 8%) и кобальта (до 15%). Введение вольфрама сопровождается повышением В , а кобальта — увеличением и В/, одновременно возрастает и (ВН)тах- Наиболее высокие для этих сталей магнитные свойства получаются в результате сложной термообработки, которая осуществляется после изготовления магнитов. Однако в магнитах из этих сталей наблюдается некоторое снижение остаточной индукции с течением времени. Для повышения стабильности применяют искусственное остарнвание выдерживанием. в кипящей воде и частичным размагничиванием готовых магнитов. Все стали допускают ковку в нагретом состоянии и холодную обработку ДО закалки..Магнитные характеристики относительно невысоки так, для хромистой стали с содержанием около 3% Сг и 1% С (остальное Fe) значения В, = 0,95 тЛ, — 4,8 ка1м-,- (ВН)тгх не менее 1,1 Kdot jM (табл. 20.1). Мартенситные стали могут применяться  [c.263]

Сплавы называют изотропными, так как их магнитные свойства одинаковы, независимо от направления намагничивания. Основными материалами этой группы являются сплавы на основе алюминия, никеля, меди и железа. Эти сплавы отличаются высокой твердостью и хрупкостью, даже в горячем состоянии они не поддаются ковке и прокатке, магниты из них изготовляют литьем или прессованием из порошков. Получение высокой коэрцитивной силы связано с механизмом дисперсионного твердения. При определенных условиях охлаждения сплава появляются две фазы слабомагнптный твердый раствор железа и алюминия (Р -фаза) и однодоменные частицы почти  [c.264]

Магнитные свойства изотропного сплава А1 — Ni — Си (с 12% Си) типа альни Вг = 0,5 тл 52 ка/м (ВН)тах = 8,8 кдж1м . Такие характеристики обеспечиваются для небольших магнитов весом примерно до 0,5 кГ. Для магнитов весом I — 2 /сГ наблюдается сни- жение магнитных свойств, но не более чем, на 15%. Некоторые изотропные сплавы А — Ni — Си — легируют кобальтом, что позволяет несколько увеличить остаточную индукцию и магнитную энергию, но одновременно удорожает сплав. Свойства изотропного сплава А1 — Ni — Си — Со (с 15% Со) Вг = 0,75 тл Яс = 48 ка1м (ВЯ)тах = 12 Магнитные свойства несколько снижаются при  [c.265]

Основными техническими материалами данной группы являются сплавы на основе кобальта, ванадия и железа, например, викаллой. Высокие магнитные свойства сплава реализуются после горячей прокатки, термической обработки, холодной прокатки с большим обжатием и отпуска. В направлении прокатки свойства викаллоя I Вг = 0,9 тл Яс = 24 /са/ж (ВН)тах = 8 кдж1м . Ковкие сплавы выпускают" главным образом в виде ленты и проволоки. Эти сплавы применяют для изготовления стрелок компасов, подвесных магнитов электроизмерительных приборов, спидометров, а также для магнитной записи. Ленту из викаллоя используют также для плоских магнитов небольшого размера или сложной конфигурации например, из штампованных заготовок можно набрать пакет индуктора ротора гистере-зисного синхронного двигателя.  [c.268]

Заметное влияние на магнитные свойства ферромагнетиков оказывают упругие изменения их размеров. При отрицательной магнито-стрикции в данном материале при действ1ии внешних растягивающих напряжений наблюдается уменьшение проницаемости. Так, для никеля под действием растягивающего  [c.271]

Легированные мартенситные стали. Эти стали являются наиболее простым и доступным материалом для изготовления постоянных магнитов. Они легируются добавками вольфрама, хрома, молибдена, кобальта. Значение № ако ДЛя мартенситных сталей составляет 1—4 кДж/м . Магнитные свойства таких сталей, указаннь е в табл. 9-9, гарантируются для мартенситных сталей после осуществления термообработки, специфичной для кал(дой. марки стали,  [c.292]


Смотреть страницы где упоминается термин Магниты Магнитные свойства : [c.64]    [c.543]    [c.60]    [c.218]    [c.234]    [c.238]    [c.232]    [c.266]    [c.269]    [c.293]    [c.294]    [c.296]   
Справочник технолога-приборостроителя (1962) -- [ c.116 ]



ПОИСК



Магний

Магний Свойства

Магнитные свойства алии сплавов металлокерамических магнитов

Сплавы алюминиевые — Температура для постоянных магнитов — Магнитные свойства

Сталь для постоянных магнитов — Магнитные свойства



© 2025 Mash-xxl.info Реклама на сайте