Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Связи механические склерономные

Конечные связи и дифференциальные интегрируемые связи составляют класс голономных механических связей, а дифференциальные неинтегрируемые связи —класс неголономных связей. Соответственно системы, содержащие лишь конечные или дифференциальные интегрируемые связи, относятся к классу голономных систем., а системы, содержащие дифференциальные неинтегрируемые связи, — к классу неголономных систем. Далее мы не будем заниматься неголономными связями, и поэтому опускаем их классификацию (рис. IV.7). Что же касается голономных связей, то их можно подразделить далее в зависимости от того, содержат ли равенства, выражающие эти связи, в явной форме время. В тех случаях, когда эти равенства не содержат время явно, механическая связь называется стационарной или склерономной. В тех случаях, когда время явно входит в эти равенства, связь называется нестационарной или реономной. Обычно стационарные связи имеют место в тех случаях, когда поверхности или кривые, на которых должны находиться материальные точки, либо расстояния между этими точками не меняются со временем. Наоборот, в тех случаях, когда материальные точки должны находиться на кривых или поверхностях, которые сами меняются со временем, связи оказываются реономными.  [c.148]


Для систем со склерономными механическими связями возможные и виртуальные скорости (и соответственно — возможные и виртуальные перемещения), естественно, совпадают.  [c.150]

Если рассматривается система без механических связей, то любые перемещения системы возможны и слова на любом возможном перемещении могут быть заменены словами на любом перемещении . Если же на систему наложены идеальные склерономные связи, то термин любые возможные перемещения , как всегда, означает любые малые перемещения, совместимые со связями .  [c.211]

Следствие 8.1.2. Для склерономной механической системы связи не зависят явно от времени дт1,/д1 = О, и кине-  [c.542]

Точечное преобразование (7.2.3) было склерономным , так как оно не включало время t. Для того чтобы обобщить наши рассуждения на реономный случай, наиболее естественно добавить время t к остальным механическим переменным и рассматривать задачу в 2п + 2)-мерном расширенном фазовом пространстве , которое связано с параметрической формой канонических уравнений (см. гл. VI, п. 10). В этом случае точечное преобразование (7.2.3) автоматически включает в себя время t, поскольку мы  [c.231]

Силовые модели основаны на том допущении, что повреждения возникают в результате пребывания элемента материала под напряжением, независимо от величины и характера склерономных или реономных деформаций, сопровождающих процесс нагружения. Деформационные модели предполагают, что накопление повреждений связано с развитием деформаций, а разрушение наступает с достижением их предельных значений вне зависимости от тех напряжений, которые возникают в процессе деформирования. В основе энергетических моделей лежат представления о том, что накопление повреждений связано с совершаемой над элементом материала работой пластического или вязкопластического деформирования, или в более строгой постановке, с уровнем накопленной внутренней энергии, равной разности между совершенной работой и механическим эквивалентом тепла, потерянного элементом материала в процессе теплообмена с окружающим материалом или с внешней средой. Если тепло не теряется, а наоборот приобретается, то накопленная внутренняя энергия превышает механическую работу. Разрушение наступает в тот момент, когда работа или накопившаяся внутренняя энергия достигает некоторого стационарного значения.  [c.66]

Это решение определяет элементарную тангенциальную силу х t) при заданном законе деформаций. Рассмотрим малые движения поверхностного слоя, считая, что он имеет объем совокупности, равный N, и представляет собой голономную механическую систему, подчиненную склерономным связям. Если при данной нагрузке число степеней свободы системы равно к, то на каждый ее элемент действует сила сопротивления, равная градиенту некоторой диссипативной функции  [c.203]


Во всех предыдущих параграфах данной главы мы рассматривали движение системы в потенциальном поле, но не требовали, чтобы поле это было стационарным. Именно поэтому мы предполагали, что лагранжиан, гамильтониан и иные функции, встречавшиеся нам по ходу изложения, могут зависеть явно от времени. В этом смысле изложенный выше материал охватывал движения в нестационарных потенциальных полях и, в частности, движение в потенциальном поле системы, имеющей механические реономпые связи. Для случая, когда система натуральна, связи склерономны и поле стационарно, т. е. когда потенциальная функция не зависит явно от времени, выше было установлено лишь то, что гамильтониан совпадает с полной энергией системы. Отправляясь от этого факта, мы ввели понятие обобщенно консервативной системы как такой гамильтоновой системы, в которой гамильтониан не зависит явно от времени, а сам гамиль-  [c.325]

При движении механической системы координаты точек и их производные по времени, входящие в уравнения связей, могут зависеть от времени Кроме того, в уравнения связей время может входить явно, помимо координат и их производных. Связи, в уравнения которых время явно не входит, называются стационарньши или склерономными. Если время входит явно в уравнение связи, то связь называется нестационарной или peo-номной. Нестационарные связи обычно реализуются посредством движущихся или деформирующихся тел. В простейшем случае одной точки нестационарная геометрическая связь в форме движущейся или деформируемой поверхности имеет уравнение. ,  [c.371]

При описании механических свойств материалов принято различать два основных вида деформации упругую и пластическую. Упругая деформация обратима, т. е. она исчезает либо одновременно со снятием напряжения, либо постепенно во время отдыха материала после paзгpyз и (это явление называют также возвратом или обратной ползучестью). Пластическая деформация необратима, т. е. она не исчезает после снятия напряжения. Если упругая или пластическая деформация связана с напряжением вне зависимости от временных характеристик процесса нагружения, то такую деформацию называют мгновенно-упругой или соответственно мгновенно-пластической. Простейшим примером закона мгновенноупругого деформирования является линейный закон Гука. В более сложном случае, когда соотношение, связывающее деформацию с напряжением, включает в качестве дополнительного параметра физическое время, эту деформацию называют вязкоупругой или, соответственно, вязкопластической. Обе мгновенные деформации часто называют склерономными (т. е. независимыми от времени), а обе вязкие деформации — реономными (зависимыми от времени).  [c.6]


Смотреть страницы где упоминается термин Связи механические склерономные : [c.154]   
Классическая механика (1980) -- [ c.148 ]



ПОИСК



Связи механические

Связь склерономная



© 2025 Mash-xxl.info Реклама на сайте