Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Взаимодействие звуковой волны с упругими телами

ВЗАИМОДЕЙСТВИЕ ЗВУКОВОЙ ВОЛНЫ С УПРУГИМИ ТЕЛАМИ  [c.186]

Для изучения вопросов, возникающих при рассмотрении взаимодействия звуковой волны с упругими телами, нам понадобится ряд соотношений теории упругости. Общую теорию деформации упругих тел можно найти в специальных руководствах (см., например, [42], [44]). Здесь мы ограничимся сводкой основных результатов, которые будут использованы ниже.  [c.186]


Уравнения (26.11), (26.12) и граничные условия (26.17), (26.18) будут использованы ниже при рассмотрении взаимодействия звуковой волны с упругими телами.  [c.193]

В твердом теле атомы при любой температуре, включая U К, непрерывно совершают колебания около их среднего положения равновесия. При небольших амплитудах такие колеба ния можно считать гармоническими. С повышением температуры амплитуды и энергии этих колебаний увеличиваются. Так как атомы в твердом теле сильно связаны друг с другом, то возбуждение колебаний одного из атомов передается ближайшим атомам, которые, в свою очередь, передают это возбуждение своим соседям и т. д. Этот процесс подобен процессу распространения звуковых волн в твердом теле. Все возможные колебания сильно связанных между собой атомов можно представить как совокупность взаимодействующих упругих волн различной длины, распространяющихся по всему объему кристалла. Так как твердое тело ограничено по размерам, то при данной температуре устанавливается стационарное состояние колебаний, представляющее собой суперпозицию стоячих волн (поверхность твердого тела для звуковых волн является узловой).  [c.141]

Заключение. Концепция Ф. (как и др. квазичастиц) помогает описать мн. свойства твёрдых тел, используя представления кинетич. теории газов. Так, решеточная тепло-проводностъ кристаллов для неметаллов — это теплопроводность газа Ф., длина свободного пробега к-рых ограничена фонон-фононным взаимодействием, а также дефектами кристаллич. решётки при низких темп-рах (границами образца). Поглощение звука в кристаллич. диэлектриках—результат взаимодействия звуковой волны с тепловыми Ф. В аморфных (в т. ч. стеклообразных) телах Ф. удаётся ввести только для длинноволновых акустич. колебаний, мало чувствительных к взаимному расположению атомов и допускающих континуальное описание твёрдого тела (см. Упругости теория).  [c.339]

Нелинейная упругость твердых тел помимо искажения формы профиля волны приводит еще к тому, что акустические волны в твердых телах взаимодействуют. Распространение в твердых телах помимо продольных волн еще и волн сдвига приводит к тому, что здесь возможностей взаимодействия волн по сравнению с жидкостями и газами существенно больше. В жидкостях и газах без дисперсии, как эго было рассмотрено в га. 2 и гл. 3, взаимодействуют волны только с колинеарньши В0ЛН0ВЫ1МИ векторами цри косых пересечениях звуковых пучков комбинационного рассеяния звука на звуке нет, т. е. вне области взаимодействия нет звуковых волн комбинационных частот. Иначе обстоит дело в твердых телах.  [c.288]


Адиабатические модули третьего порядка принципиально могут быть измерены танже по искажению и взаимодействию упругих волн в твердых телах. Величины этих акустических нелинейных эффектов (см. 3 этой главы) зависят от различных комбинаций А, В С. Однако этот Метод имеет свои весьма существенные трудности. Как и при определении нелинейного параметра жидкости (см. гл. 4, 2), нужны абсолютные измерения звукового поля. В прозрачных твердых телах их можно сделать оптическими методами в непрозрачных же  [c.304]

К таким явлениям можно отнести нелинейную трансформацию спектра интенсивного шума при его распространении в нелинейной среде, когда из-за взаимодействий спектральных компонент этого шума происходит перекачка энергии как в низкочастотную, так и в высокочастотную части спектра (так называемая акустическая турбулентность). Другим примером может служить поглощение звука гиумом, когда слабый монохроматический сигнал, распространяясь в широкополосном шуме, из-за взаимодействия с ним испытывает поглощение энергия сигнала отбирается шумом. Отметим, что даже поглощение звука за счет вязкости и теплопроводности, о котором шла речь в гл. 2, можно считать именно результатом такого взаимодействия акустического сигнала с шумом, который в данном случае есть не что иное, как спектр тепловых фононов или упругих дебаевских волн. Об этом будет идти речь при рассмотрении поглощения упругих волн в твердых телах. Укажем еще на один эффект — уширение спектральных линий гармоник исходного узкополосного возмущения при распространении случайно-модулиро-ванной звуковой волны конечной амплитуды.  [c.108]

В случае ядерного С.-ф. в. связь упругих колебаний твёрдого тела с системой ядерных спинов может осуществляться посредством нескольких типов электрич. и магнитных взаимодействий, сила к-рых периодически модулируется акустич. колебаниями. Такими взаимодействиями являются магнитное диполь-дипольное между соседними спинами электрич. квадру-польное между квадрупольными моментами ядра и градиентом электрич. поля, создаваемым внешними по отношению к ядру зарядами сверхтонкое взаимодействие в ферромагнитных материалах взаимодействие ядерного магнитного момента со слабым радиочастотным магнитным полем, возникающим при распространении поперечной звуковой волны в металле, и др. Ядра со спином /> 4 могут обладать электрич. квадрупольным моментом, к-рый является мерой отклонения распределения заряда в ядре от сферич. формы. Акустич. колебания кристаллич. решётки вызывают периодич. изменения градиента внутрикристаллич. электрич. полей, к-рые, взаимодействуя с квадрупольным моментом ядра, осуществляют ядерное С.-ф. в. (т. н. динамич. ядерное квад-  [c.335]

Трудности в определении импеданса препятствия возникают каждый раз, когда под воздействием звуковой волны в самом препятствии генерируется волновое поле, существенно влияющее на характер взаимодействия между звуковой волной и препятствием. Это внутреннее волновое поле, как правило, сильно зависит от формы препятствия, вида падающей звуковой волны, частотного диапазона воздействия и других факторов. Именно поэтому такое взаимодействие звука с препятствием не удается достоверно описать с использованием понятия импеданса. В этом случае необходимо решать задачу об определении волновых полей в полной, кусочно-однородной области, заменяя граничные условия условиями сопряжения. В общем случае поведение волнового поля в препятствии может и не описываться моделью идеальной сжимаемой жидкости. В частности, препятствие может быть твердым упругим телом, твердым электроупругим телом и т. д. В каждом конкретном случае количество условий сопряжения волновых полей будет различным. Однако они всегда должны включать в себя условия равенства давления в звуковой волне и взятой со знаком минус нормальной составляющей вектора напряжений на границе  [c.7]


Пусть звуковая волна ро (рис. 2.12) падает на поверхность тела 5. Требуется определить звуковое поле р , рассеянное телом при заданных граничных условиях на поверхности. В работе [148] рассмотрены граничные условия Дирихле и Неймана (акустически мягкая и жесткая поверхности соответственно), а также случай препятствия в виде некоторого объема жидкости, плотностью и сжимаемостью отличающимися от аналогичных параметров окружающей среды. В дальнейшем метод был распространен на упругие тела, а также на системы тел с учетом взаимодействия отдельных тел.  [c.86]

В настоящей монографии кратко и систематизированно описаны основные физические свойства и характеристики многочисленных типов звуковых (упругих) поверхностных волн, дана их классификация. Весьма подробно изложены вопросы возбуждения (приема) и распространения в твердых телах различной формы поверхностных рэлеевских волн, являющихся основным и наиболее широко используемым на практике типом звуковых поверхностных волн. Теоретически и экспериментально рассмотрены звуковые поверхности ные волны в пьезоэлектрических кристаллах, включая их возбуждение (прием), взаимодействие с электронами (усиление волн постоянным электрическим током) и распространение по цилиндрическим поверхностям. Отмечены многочисленные практические применения звуковых поверхностных волн.  [c.2]

Особенностью УЗ в высокочастотном и гиперзвуковом диапазонах является возможность применения к нему представлений и методов квантовой механики, поскольку длины волн и частоты в этих диапазонах становятся одного порядка с параметрами и частотами, характеризующими структуру вещества. Упругой волне данной частоты при этом сопоставляется квазичастица — фонон, или квант звуковой энергии. Квантово-механич. представления удобны при рассмотрении различных взаимодействий в твёрдых телах. Напр., рассеяние и поглощение звука колебаниями кристаллич. решётки можно рассматривать как взаимодействие когерентных и тепловых фононов, комбинационное рассеяние света (см. Манделъштама — Бриллюэна рассеяние) — как взаимодействие фотонов с фо-нонами, а взаимодействие с электронами проводимости в металлах и полупроводниках и со спинами и спиновыми волнами в магнитоупорядоченных кристаллах (см. Магнитоупругие волны) — соответственно как электрон-фо-нонное, спин-фононное и магнон-фононное взаимодействия.  [c.12]


Смотреть страницы где упоминается термин Взаимодействие звуковой волны с упругими телами : [c.165]    [c.781]   
Смотреть главы в:

Волновые задачи гидроакустики  -> Взаимодействие звуковой волны с упругими телами



ПОИСК



Взаимодействие звуковых волн

Взаимодействие упругое

Взаимодействующие волны

Волны звуковые

Волны упругие

Тела упругие, взаимодействующие

Упругие тела



© 2025 Mash-xxl.info Реклама на сайте