Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Задание термодинамической системы и ее состояния в макроскопической теории

Задание термодинамической системы и ее состояния в макроскопической теории  [c.27]

Таким образом, мы показали, что расчет термодинамического потенциала (т. е. такой величины, которая содержит, как мы уже отмечали, всю в рамках термодинамического подхода информацию о системе) в макроскопической теории основывается на задании (произведенном извне) макроскопических же уравнений состояния, т. е. соотнощений, по идее тоже определяемых с помощью термодинамического потенциала, что сводит эффективность метода термодинамических потенциалов до уровня, не превышающего возможностей переформулированной теории. В следующем разделе курса мы увидим, что основные методы определения термодинамических потенциалов (так сказать, нетривиальные , т. е. не вращающиеся в кругу однородных макроскопических понятий уравнение состояния->потенциал уравнение состояния) — это методы статистической механики, в которой система задается не с помощью уравнений состояния, а уже на микроскопическом уровне (т. е. как в механике).  [c.92]


Вводя чисто формально в равновесную макроскопическую теорию термодинамические потенциалы, мы покажем, что задание какого-либо из них для данной конкретной системы эквивалентно заданию полной информации о всех ее термодинамических свойствах (включающей решения всех задач, упомянутых в 4, уравнения состояния данной системы и т.д.).  [c.64]

В макроскопической теории исходным моментом является задание уравнений состояния, включая восприимчивости, внешних полей, граничных и начальных условий, выраженных через значения (локальные) термодинамических параметров, а основной математической проблемой является решение соответствующей краевой задачи математической физики для системы линейных дифференциальных уравнений в частных производных.  [c.235]

Полученные выше как следствие П начала термодинамики в форме (П) соотношения ( ) фактически замыкают аппарат макроскопической термодинамики, т. е. позволяют на основе термодинамического задания системы с помощью уравнений состояния рассчитать интересующие нас в макроскопической теории характеристики системы. Покажем это на примере системы типа газа (т. е. в случае л =У). Так как зависимость термодинамических величин от N нам заранее известна, то достаточно сформулировать процедуру расчета удельных величин е, 5 и т. д. Итак, пусть система задана с помощью уравнений состояния  [c.57]

Проблемой исследования свойств макроскопических систем, находящихся в состоянии равновесия, на основании известных свойств образующих такие системы частиц занимается статистическая физика. Основная задача заключается в том, чтобы описать поведение системы, содержащей весьма большое число частиц (например, 1 кг или 1 кмоль реального газа), по свойствам и законам движения отдельных молекул, которые считаются заданными. Поведение макроскопических систем определяется закономерностями особого рода — статистическими закономерностями. Общие равновесные свойства системы (например, термодинамические параметры, характеризующие ее состояние) сравнительно мало зависят от конкретных свойств частиц и законов их взаимодействия. Это обстоятельство позволяет установить общие законы поведения систем и, в частности, законы теплового поведения макроскопических тел в состоянии равновесия например, методами статистической физики можно теоретическим путем получить уравнение состояния (разумеется, в ограниченном числе случаев). Следует отметить, что последовательное применение статистических методов нельзя осуществить на основе классической механики движения частиц. Даже для описания движения сравнительно тяжелых частиц (молекул) в объеме макроскопической системы, когда, казалось бы, справедливы положения ньютоновской механики, приходится использовать теорию движения микрочастиц— квантовую механику. Таким образом, получение уравнения состояния реальных газов теоретическим путем в принципе возможно, но для большинства практически важных случаев связано с непреодолимыми трудностями. Однако теория позволяет обосновать общий вид уравнения состояния.  [c.100]


Вообще говоря, теорию линейной реакции можно построить на различных уровнях описания системы. В феноменологической неравновесной термодинамике [70] используется чисто макроскопический подход, основанный на локальных уравнениях состояния и линейных соотношениях между неравновесными потоками и так называемыми термодинамическим силами. Эти силы описывают либо механические возмущения связанные с работой, производимой над системой, либо термические возмущения вызванные внутренней неравновесностью системы и контактом системы с окружением ). Коэффициенты в соотношениях между потоками и термодинамическим силами называются кинетическими коэффициентами. В неравновесной термодинамике они являются заданными величинами и берутся из эксперимента.  [c.338]

В предыдущих разделах мы обсудили устойчивость термодинамического состояния при флуктуациях. Но представленная теория не определяет вероятность флуктуации заданной величины. И несмотря на то что наш опыт свидетельствует о том, что флуктуации термодинамических величин чрезвычайно малы в макроскопических системах, за исключением состояний, близких к критическим точкам, тем не менее хотелось бы иметь теорию, которая связывала бы эти флуктуации с термодинамическими величинами и описывала условия, при которых они становятся существенными.  [c.312]

Тематика первой части Курса, достаточно подробно отраженная в оглавлении, естественным образом распадается на два больших раздела ) макроскопическую термодинамику и статистическую механику равновесных систем. Благодаря тому что на физическом факультете удалось спланировать учебный Ьроцесс так, что часть обязательного материала,переносится на семинарские занятия, которые проводятся по единой системе заданий, то, как правило, первые 7-8 лекций этого курса (осенний семестр включает обычно до 22 лекций) посвящены макроскопической термодинамике (ей же посвящается более трети всех семинарских занятой), а затем уже читается равновесная статистическая механика, представляющая основной материал этого семестра. Автор отказался от возможности объединить оба раздела (тома. — Прим. ред.), растворив материал первого во втором, чтобы не сог здавать иллюзии, что макроскопическая теория имеет характер предварительного введения, формулировки и положения которого в дальнейшем при рассмотрении микроскопической теории будут переосмысливаться, уточняться и т.д. Напротив, в этой части закладываются те основные и общие представления теории, без понимания которых развитие микроскопической теории было бы просто невозможным. К таким понятиям следует отнести в первую очередь понятие термодинамической системы с ее особенностями, понятие равновесного состояния такой системы и его свойств, понятия температуры, энтропии, химического потенциала (т. е. величин, не имеющих аналогов в механике) и т.д., наконец, основные Качала термодйг намики, которые и в микроскопической теории сохраняют свое аксиоматическое значение. Следует отметить, что сама аксиоматика макроскопической термодина- МИКИ за прошедшие полтораста лет настолько обговорена и продумана что ее внутренняя органическая взаимосвязанность (речь идет о квазистатической теории) стала служить примером логического построения теории (после, конечно, теоретической механики). Особо отмечая эту ее особенность, Анри Пуанкаре заметил, что в термодинамике нельзя сделать ни малейшей бреши, не разрушив всего ее здания (Н. Poin are, 1911).  [c.7]

Заканчивая вводную часть, посвященную напоминанию необходимых нам в дальнейшем сведений из макроскопической теории (см. более полно том 1) заметим, что термодинамические потенциалы по отношению к равновесным состояниям системы обладают характерными экстремальными свойствами, вытекающими из 2-й, неравновесной части II начала и 0-го начала термодинамики. Именно, если, к примеру, зафиксированы параметры V, — изолированная система, то равновесное значение энтропии 5 = 3( , V, Н) соответствует ее максимальному значению для данной системы с этими фиксированными параметрами. Если заданы переменные в,У,М), в,У,р) или в,p,N) — системы в термостате, выделенные непроницательными для частиц неподвижными стенками, воображаемыми стенками, то равновесным значениям соответственно V, N), С1(0, V, р) или С в, р, М) соответствуют минимальные величины этих термодинамических потенциалов. Таким образом, любые вариации параметров первоначально равновесной системы, не нарушающие условия заданности величин (< , V, ), приводят к уменьшению энтропии, при фиксированных величинах (0, V, ЛГ), (0, V, ц) или в, p,N) — к увеличению свободной энергии, потенциала омега или потенциала Гиббса. Поэтому при постановке вариационных задач, выявляющих условия равновесия и устойчивости состояний термодинамической системы, вариации соответствующих потенциалов производятся по тем параметрам системы, которые при указанных выше фиксированных условиях могут принимать неравновесные значения. Это могут быть, например величины плотности, температуры и т. д. в отдельных частях системы, количества веществ в разных фазах, химический состав системы и т.д., включая искусственные или воображаемые перегородки внутри системы и т. п.  [c.12]



Смотреть страницы где упоминается термин Задание термодинамической системы и ее состояния в макроскопической теории : [c.74]    [c.142]    [c.13]    [c.265]   
Смотреть главы в:

Термодинамика и статистическая физика Т.1 Изд.2  -> Задание термодинамической системы и ее состояния в макроскопической теории

Термодинамика и статистическая физика Теория равновесных систем  -> Задание термодинамической системы и ее состояния в макроскопической теории



ПОИСК



Задание

Макроскопическая теория

Система макроскопическая

Состояние макроскопическое

Состояние системы

Состояние теории

Состояние термодинамическое

Теория систем

Термодинамическая система

Термодинамическая теория



© 2025 Mash-xxl.info Реклама на сайте