Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Понятие о динамическом нагружении

К задачам устойчивости упругих систем относят также многие задачи о поведении упругих тел, нагружаемых быстро изменяющимися нагрузками, если последние таковы, что им соответствуют некоторые задачи устойчивости равновесия в классической теории упругой устойчивости. При изучении динамического нагружения упругих систем обычно определяют их поведение во времени при некоторых вполне определенных начальных условиях, т. е., по существу, решают задачу Коши. Вопрос об устойчивости этих решений, как правило, не ставится. Тем не менее в прикладных работах говорят об устойчивости , неустойчивости , критических силах и т. п., приписывая этим понятиям в зависимости от контекста тот или иной смысл.  [c.351]


Понятие о динамическом нагружении  [c.470]

Значит, если силы изменяются достаточно медленно — нагружение статическое. В противном случае — динамическое. Достаточно медленно — понятие неопределенное, но в данном случае есть простая и вполне очевидная мера. Если промежуток времени, в течение которого сила заметно меняет свое значение, существенно больше периода собственных колебаний системы, нагружение можно считать статическим. Это следует воспринимать как правило, хотя из него возможны и исключения.  [c.454]

Главное, что будет излагаться в этой книге, по существу, состоит из трех основных частей 1) основные понятия о перемещениях, внутренних напряжениях, деформациях и работе внутренних сил, а также о процессе нагружения малого элемента твердого тела 2) основные механические свойства твердых тел, такие, как упругость и идеальная пластичность, текучесть, ползучесть и релаксация, вязкость и динамическое сопротивление, усталость и разрушение 3) основные кинематические и геометрические гипотезы, упрощающие математическую постановку задач о напряжениях, деформациях, перемещениях и разрушениях твердых тел при различных внешних воздействиях, а также основные уравнения и методы решения задач о деформации и прочности тел. Методы сопротивления материалов отличаются от более строгих методов теории упругости и пластичности в основном введением ряда упрощающих предположений кинематического и геометрического характера и, тем не менее, в большинстве случаев оказываются достаточно точными.  [c.12]

Ударное нагружение стержня. Понятие энергии деформации является полезным, когда имеют дело с нагрузками динамического характера. Такие нагрузки связаны с определенным количеством энергии, которая должна либо преобразоваться в энергию деформации стержня, либо рассеяться, вызывая в стержне пласти-  [c.46]

К статическому относилось и такое поведение системы, которое соответствует медленно меняющемуся воздействию. Разумеется, понятия медленно и быстро нуждаются в количественной оценке. Она может быть осуществлена лищь при рассмотрении динамического процесса в системе. В настоящей главе дается оценка, позволяющая провести условную границу между статическим и динамическим нагружениями системы.  [c.7]

Если нагрузки быстро изменяются во времени, то возникающие при деформации тела инерционные силы могут играть существенную роль, и их необходимо учитывать. Обобщение основных соотношений метода конечных элементов на случай динамического нагружения приводит к понятию матрицы масс. Матрица масс имеет в принципе такую же структуру, что и матрица жесткости, но в отличие от последней она может быть представлена и в диагональной (или блочио-диагональ-ной) форме, что важно для снижения затрат машинного времени и объема памяти ЭВМ. При надлежащей формулировке диагональная матрица масс так же хорошо описывает распределение массы в конструкции, как и согласованная матрица.  [c.329]


Для гармонического нагружения удобно ввести понятия динамической усталостной прочности и деформации, подразумевая соответ-ствуюш ие амплитудные значения этих параметров — амплитуду напряжения Оо амплитуду деформации ед. В линейном приближении усталостная энергия разрыва условно характеризуется полупроизведением этих величин. В разделе 1.3 были описаны наиболее характерные режимы гармонического нагружения, иллюстрированные на рис. 1.3.4. Очевидно, что стационарному (установившемуся) периоду нагружения, протекаюш ему при постоянстве амплитудных значений ао и во, предшествует нестационарный (неустановившийся) период, в течение которого (в зависимости от того, что задано — напряжение или деформация) наблюдается изменение зависимого параметра.  [c.229]

Вязкость является основным параметром, характеризующим масла, так как с ней связаны условия нагружения опор и потери. Определение понятия для динамической, кинематической и технических единиц вязкости (Энглера, Сейболта, Реднуда и др.), а также перевод единиц см. ЭСМ т, 1, кн. 2-я, стр. 383.  [c.769]

Решение проблемы обеспечения прочностной надежности элементов конструкций на стадии их проектирования и расчета в значительной степени зависит от достоверности информации о возникающих в эксплуатации воздействиях (нагрузках). Информация эта может быть представлена в различной формами иметь различную степень детализации. Она может быть использована либо непосредственно для анализа нагрузок и напряжений и оценок прочностной надежности, либо быть исходной (входом) при динамическом анализе механических систем. Разнообразие режимов работы и особенностей функционирования различных элементов конструкций обусловливает многообразие возникающих воздействий. В качестве примера рассмотрим осциллограммы реальных нагрузок, возникающих в подрессоренных и неподрес-соренных элементах конструкций транспортных и землеройных машин при движении их по дорогам случайного профиля и при выполнении некоторых технологических операций (рис. 1.1 и 1.21. Качественные и количественные различия в возникающих нагрузках обусловлены различием в условиях нагружения и особенностями выполняемой, технологической операции. Неупорядоченные нагрузки возникают также в элементах строительных конструкций (мачтах, антеннах) при случайных порывах ветра, в самолетах в полете при пульсации давления в пограничном турбулентном слое воздуха и при посадке и движении самолета по взлетной полосе и т. д. Нерегулярные морские волнения приводят к аналогичной картине изменения усилий и напряжений в элементах конструкций судов и береговых гидротехнических сооружений. Вопрос о том, какая по величине нагрузка возникнет в некоторый конкретный момент времени, не имеет определенного (детерминированного) ответа, так как в этот момент времени она может быть, вообще говоря, любой из всего диапазона возможных нагрузок. Введение понятия случайности, мерой которой является вероятность, снимает эту логическую трудность и позволяет ввести количественные оценки в область качественных представлений  [c.7]

Решающую роль резонансных явлений в формировании энергетической картины, представленной на рис. 102, подчеркивают данные расчетов для второго случая нагружения в (4.1). Как указывалось выше, самоуравновешенность внешней нагрузки является достаточной для устранения особенностей в выражении для потока мощности. В связи с этим все кривые на рис. 103, характеризующие зависимость от частоты вклада отдельных мод в общий поток мощности, являются очень плавными Сравнение данных рис. 99 и 102, с одной стороны, и рис. 103 — с другой, свидетельствует о том, что характер волнового движения в слое на больших расстояниях от места приложения нагрузки существенно зависит от способа ее распределения по поверхности. В том частотном диапазоне, где существует только одна распространяющаяся мода, используя понятие энергетической эквивалентности нагрузки, также можно говорить о существовании некоторого динамического аналога принципа Сен-Венана.  [c.263]

Понятие усталости материала возникло из экспериментального факта разрушения, происходящего через определенное время механического воздействия, часто вызывающего одновременное изменение свойств материала. Оно связано с понятием долговечности, или времени, протекающего от начала нагружения до момента разрушения материала. Поскольку режимы нагружения при этом могут быть различными, появляются и разные понятия усталостной прочностп (статической, динамической) как напряжений, прп которых происходит длительное разрушение.  [c.182]


В обычной трактовке нагружение и условия образования хрупкого разрушения тел понимались как статические, т. е. рассматривались деформации и напряжение в корне не движущейся трещины или остаточные пластические деформации в месте излома тела это позволило определить критическую величину трещины, или критические размеры тела. Для этого были привлечены понятия о локальных свойствах материала, или средних свойствах тел при хрупком изломе. Распространение хрупкой трещины сопровождается изменениялп локальных свойств металла перед корнем трещины и упругими быстро меняющимися напряжениями высокого уровня в теле. Упругие волны, сопровождающие развитие трещины распространяются от нее и отражаются от краев тела и от внезапных изменений его формы и от препятствий в теле. Трещина распространяется перпендикулярно мгновенным направлениям максимального напряжения растяжения, как результат суперпозиции статического и динамического поля напряжения. Трещина поэтому может отклоняться от прямолинейного  [c.374]

Понятия о колебательных движениях и волнах сформулировались в начале XIX в. В то время получены линейные решения уравнений теоретической механики и гидродинамики, описывающие движения планет и волн на воде. Несколько позднее благодаря наблюдательности Д. С. Рассела [186], теоретическим исследованиям Б. Римана [97, 99] и других исследователей сформировалось понятие о нелинейных волнах. Однако, если линейные колебания и волны были весьма полно изучены в XIX в., что нашло отражение в фундаментальном курсе Д. Рэлея [177], то этого нельзя сказать о нелинейных колебаниях. Сознание того, что нелинейные уравнения содержат в себе качественно новую информацию об окружающем мире пришло после разработки А. Пуанкаре новых методов их изучения. Созданные им и другими исследователями методы интегрирования нелинейных уравнений нашли широкое применение в радиофизике [6] и механике твердых тел [73]. Более медленно нелинейные понятия и подходы входили в механику жидкости и твердого деформируемого тела. Показательно, что первые монографии, посвященные нелинейному поведению деформируемых систем, были опубликованы на-рубеже первой половины XX в. [39, 72, 107, 153]. В это же время резко возрос интерес к нелинейным колебаниям и волнам в различных сплошных средах. Сформировались нелинейная оптика, нелинейная акустика [97, 173], теория ударных волн [9, 198] и другие нелинейные науки [184, 195, 207]. В них рассматриваются обычно закономерности формоизменения волн, взаимодействия их друг с другом и физическими полями в безграничных средах. Нелинейные волны в ограниченных средах исследованы в значительно меньшей степени, несмотря на то что они интересны для приложений. В последнем случае важнейшее значение приобретает проблема формирования волн в среде в результате силового, кинематического, теплового или ударного нагружения ее границ. Сложность проблемы связана с необходимостью учета физических явлений, которые обычно не проявляют себя вдали от границ, таких как плавление, испарение и разрушение среды, а также взаимодействия соприкасающихся сред. В монографии рассмотрен широкий круг задач генерации и распространения нелинейных волн давления, деформаций, напряжений в ограниченных неоднородных сплошных средах. Большое внимание уделено динамическому разрушению и испарению жидких и твердых сред вблизи границ, модельным построениям для адекватного математического описания этих процессов. Анализируется влияние на них взаимодействия соприкасающихся сред, а также механических и тепловых явлений, происходящих в объемах, прилегающих к границам.  [c.3]

Помимо перечисленных, так называемых внешних факторов, существует большое число факторов, отражающих реакцию материала на возникшие состояния и протекающие процессы, т. е. то, что принято называть свойствами материалов в широком смысле этого понятия. Свойства материалов и элементов конструкции, в которых они физически воплощены, крайне многообразны а) упругость, характеризуемая модулем упругости Е, и пластическая деформируемость, описываемая диаграммой о = / (е) б) прочность, выражаемая при однократном нагружении пределом текучести, временным сопротивлением, истинным разрушающим напряжением в) пластичность в виде относительного удлинения и поперечного сужения г) упрочняемость материала и пластическая неустойчивость при растяжении д) упругая неустойчивость при сжатии е) сопротивляемость накоплению усталостных повреждений, в том числе у острия трещины ж) прочность при повторных пластических нагружениях з) сопротивление ползучести и) длительная прочность и пластичность при высоких температурах к) старение металла под воздействием деформации, температуры, времеии л) сопротивление началу разрушения в присутствии концентраторов — надрезов, трещин м) сопротивление быстрому динамическому распространению трещин н) стойкость против общей межкристаллитной коррозии, а также против коррозионного растрескивания о) сопротивление замедленным разрушениям п) хладостойкость и др.  [c.256]


Смотреть страницы где упоминается термин Понятие о динамическом нагружении : [c.8]    [c.425]   
Смотреть главы в:

Сопротивление материалов Изд3  -> Понятие о динамическом нагружении



ПОИСК



Нагружение динамическое



© 2025 Mash-xxl.info Реклама на сайте