Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Свойства движения, соответствующего периодическому решению

Обсуждаются общие свойства пространства решений симметрии, различные расслоения фазового пространства, его разделение на колебательную и вращательную области. Изучаются свойства рещений, соответствующих колебательной области свойства асимптот при движении твердого тела, различные отношения эквивалентности на пространстве траекторий, качественные аналогии, механические интерпретации асимптотических движений. Изучаются свойства решений, соответствующих вращательной области существование семейства периодических траекторий, всюду плотно заполняющих некоторые области, вопросы плотности незамкнутых траекторий в ограниченных множествах.  [c.169]


В ограниченной задаче трех тел орбиты называются периодическими, если периодическим является движение бесконечно малой частицы относительно вращающейся системы координат. Пуанкаре в своей классической работе, посвященной ограниченной задаче, говорил, что изучение периодических орбит является важнейшим вопросом и отправным пунктом в задаче классификации решений. Особое значение, которое он придавал периодическим орбитам, отражается в его знаменитом предположении если дано частное решение ограниченной задачи, то всегда можно найти периодическое решение (быть может, с очень большим периодом), обладающее тем свойством, что при любом / оно сколь угодно мало отличается от исходного решения. В терминах фазового пространства это утверждение можно выразить следующим образом если дана точка в фазовом пространстве, то сколь угодно близко от нее всегда существует другая точка, соответствующая периодической орбите. Предположение Пуанкаре относилось только к решениям, ограниченным в фазовом пространстве, т. е. он не рассматривал орбиты, соответствующие уходу или столкновению.  [c.160]

Все эти свойства, однако, исчезают при переходе к следующим приближениям. Эффекты следующих приближений хотя и являются малыми, но для некоторых явлений могут играть основную роль. Эти эффекты обычно называют ангармоническими в связи с тем, что соответствующие уравнения движения нелинейны и не допускают простых периодических (гармонических) решений.  [c.145]

При фиксированном значении м уравнение (5) может иметь несколько решений (а , ai, аз,. ..), которым соответствует несколько различных периодических движений системы с одинаковым периодом 2п1и). В виброизолированной системе с ограничительными упорами (см. рис. 2) одно из этих решений соответствует колебаниям малой амплитуды, при котором система не выходит за пределы области линейности упругой характеристики. Только при реализации этого периодического режима обеспечивается осуществление виброзащитных свойств системы. Остальные периодические решения соответствуют колебаниям,-сопровождающимся соударениями с упорами. Если в системе возникает один из таких режимов, виброизоляционные свойства системы нарушаются. Возникновение в системе того или иного периодического движения зависит от начальных условий, которые в реальных системах обычно не могут быть заданы с достаточной определенностью. Перескок системы с одного периодического режима на другой становится возможным в результате случайного толчка или удара. Аналогичные явления могут возникать и в системах с гладкими нелинейными характеристиками (см. рис. , а и б).  [c.236]


Известно, что динамика гамильтоновых систем (в том числе систем с упругими отражениями) подчиняется вариационным принципам. В связи с этим обстоятельством характеристики периодических траекторий гамильтоновых систем можно разбить на два класса динамические и геометрические. Первые определяются отображением Пуанкаре, соответствующим данному периодическому решению уравнений движения. К ним относятся величины характеристических показателей, свойства невырожденности (по Пуанкаре) и орбитальной устойчивости. Вторые являются характеристиками периодической траектории как критической точки функционала действия. К ним относятся индекс Морса, невырожденность по Морсу, а также введенный ниже определитель Хилла.  [c.157]

Понятие о параметрических резонансах. Уравнение (1) имеет тривиальное ре-тиение q s О, которое отвечает невозмущенному равновесию или невозмущенному периодическому движению системы. Пусть коэффициенты уравнений зависят от некоторых параметров, характеризующих свойства параметрического воздействия и (или) системы. При некоторых значениях параметров решение q = О может оказаться неустойчивым. Это означает, что имеет место параметрическое возбуждение колебаний механической системы. Множества точек, соответствующих неустойчивости, как правило, образуют области в пространстве параметров, которые называют областями неустойчивости областями динамической неустойчивости) механической системы. Если параметрическое воздействие — периодическое и если среди варьируемых параметров содержатся частоты параметрического воздействия, то особый интерес представляет нахождение частотных соотношений, при которых наблюдается наиболее интенсивное параметрическое возбуждение. Эти частотные соотношения, как и возбуждаемые при этих соотношениях колебания, называют параметрическими резонансами.  [c.117]

Устойчивость вынужденных колебаний нелинейной системы. При гармоническом возбрхдении механической системы с нелинейной характеристикой восстанавливающей силы в некотором диапазоне частот решение задачи о вынужденных колебаниях неоднозначно — одному и тому же значению частоты возбуждения соответствуют несколько значений полуразмахов колебаний (см. с. 28), т. е. несколько разных режимов движения. Некоторые из этих режимов неустойчивы. При анализе устойчивости различных режимов коэффициенты уравнений первого приближения оказываются периодическими функциями времени (см. с. 39) для системы с одной степенью свободы уравнения первого приближения обычно приводятся к уравнению типа Хилла (или в частном случае к уравнению Матье), Задача устойчивости периодического режима движения нелинейной системы сводится к оценке свойств решений этого уравнения (см. т. 1).  [c.41]

Исследованию устойчивости движения гироскопического компаса лосвящены работы В. Н. Кошлякова. При последовательных циркуляциях корабля движение гирокомпаса, не обладающего свойствами гирогоризонткомпаса, можно описать двумя линейными дифференциальными уравнениями второго порядка с периодическими коэффициентами. Автор исследовал устойчивость их решения и получил формулы, описывающие движение гирокомпаса на конечном интервале времени, соответствующем полуциркуляции (1959).  [c.247]


Смотреть страницы где упоминается термин Свойства движения, соответствующего периодическому решению : [c.15]    [c.332]   
Смотреть главы в:

Небесная механика Аналитические и качественные методыИзд.2  -> Свойства движения, соответствующего периодическому решению



ПОИСК



Движение периодическое

Решение периодическое

Свойства движения



© 2025 Mash-xxl.info Реклама на сайте