Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения Эйлера-Пуассона и интегрируемые случаи

Уравнения Эйлера-Пуассона и интегрируемые случаи  [c.85]

Замечание 4. Случаи интегрируемости уравнений на алгебре е(3), дополнительный интеграл которых зависит лишь от переменных М, типа случаев Лагранжа и Гесса для уравнений Эйлера-Пуассона или типа случаев Кирхгофа, Чаплыгина (II) для уравнений Кирхгофа, очевидным образом переносятся на системы на пучке скобок (2.4), включающих при х = 1 алгебру во(4). Это связано с тем, что уравнения для М для всех скобок пучка совпадают (см. ниже).  [c.186]


Функции Fi и F2, которые называются интегралами импульсивного момента и импульсивной силы соответственно, являются функциями Казимира и фиксируют симплектический лист (в дальнейшем интеграл Fi, по аналогии с уравнениями Эйлера-Пуассона, мы называем интегралом площадей). Для интегрируемости возникающей на листе гамильтоновой системы с гамильтонианом (1.2) не хватает еще одного дополнительного интеграла (это следует также из теории последнего множителя — вследствие наличия стандартной инвариантной меры). В общем случае уравнения Кирхгофа не являются интегрируемыми. Их неинтегрируемость и стохастичность обсуждается, например, в [31].  [c.165]

B 7 гл. 5 приведено более общее семейство частных интегрируемых случаев на пучке скобок частными случаями которого являются случай Ковалевской уравнений Эйлера-Пуассона, случай Чаплыгина (I) уравнений Кирхгофа и случай Богоявленского (I) уравнений Пуанкаре-Жуковского, а также различные гиростатические обобщения.  [c.196]

Лагранж, Жозеф Луи (25.1.1736-10.4.1813) — великий французский математик, механик, астроном. В своем знаменитом трактате Аналитическая механика (в 2-х томах), наряду с общим формализмом динамики, привел уравнения движения твердого тела в произвольном потенциальном силовом поле, используя связанную с телом систему координат, проекции кинетического момента и направляющие косинусы (том II). Там же указан случай интегрируемости, характеризующийся осевой симметрией, который был доведен им до квадратур. Следуя своему принципу избегать чертежей, Лагранж не приводит геометрического изучения движения, а рисунки поведения апекса, вошедшие ранее почти во все учебники по механике, впервые появились в работе Пуассона (1815 г), который рассмотрел эту задачу как совершенно новую. Пуассон, тем не менее, систематизировал обозначения, усложняющие понимание трактатов Даламбера, Эйлера и Лагранжа и рассмотрел различные частные случаи движения (случай Лагранжа в некоторых учебниках называют случаем Лагранжа-Пуассона). В свою очередь Лагранж упростил решение для случая Эйлера и дал прямое доказательство существования вещественных корней уравнения третьей степени, определяющих положение главных осей. Отметим также вклад Лагранжа в теорию возмущений, позволивший Якоби рассмотреть задачу о возмущении волчка Эйлера и получить систему соответствующих оскулирующих переменных.  [c.21]

В заключение заметим, что процедуры приведения и поднятия, описанные в этом разделе, используются нами в 4 гл. 3 и 4 гл. 5 для анализа кватернионных уравнений Эйлера-Пуассона и их интегрируемых случаев.  [c.231]


В случае, разобранном С. В. Ковалевской, так же как и в ранее известных, система уравнений движения имеет дополнительный первый интеграл, что и обеспечило возможность их интегрирования в квадратурах. При этом оказалось, что в некоторых естественных переменных переменные Эйлера-Пуассона) во всех случаях интегрируемости дополнительные интегралы являются многочленами, так же как и классические первые интегралы. Таким образом, общее решение представляется мероморфными функциями времени как раз в тех случаях, когда существует новый алгебраический интеграл. Этот результат, естественно, поставил общую задачу о связи между существованием алгебраических интегралов аналитических систем дифференциальных уравнений и мероморфностью общего решения. На важность этой задачи впервые обратил внимание Пенлеве [41].  [c.126]

Алгебраическая интегрируемость уравнений Эйлера-Пуассона исследовалась еще Гюссоном (1906 г.) [230] (см. также [9]), который показал, что у задачи не может быть других алгебраических интегралов, исключая случаи Эйлера, Лагранжа и Ковалевской.  [c.90]

Для движения твердого тела п = Ъ ъ интегрируемых случаях и абсолютное движение, вообще говоря, является трехчастотным. Движение приведенной системы, при наличии линейного интеграла (типа интеграла площадей) является двухчастотным. В этом случае третья частота при переходе к абсолютному движению получается из квадратуры для угла прецессии. Далее мы рассмотрим интегрируемые случаи уравнений Эйлера-Пуассона.  [c.93]

В зависимости от расположения силовьк центров в твердом теле и ограничений на моменты инерции возможны следующие случаи интегрируемости, обобщающие соответствующие в уравнениях Эйлера-Пуассона.  [c.208]

При помощи (4.5) и (4.7) интегрируемость обобщенного волчка Ковалевской в случае Делоне может быть установлена и без использования интеграла Рг (4.4). Оказывается также, что полный набор интегралов, включающий Р, гг, 22, -Рз уже оказывается зависимым. Интересно заметить также, что в случае одного силового поля д = др = = 0) кубичный по моментам интеграл (4.6) имеет структуру, почти аналогичную частному интегралу Горячева-Чаплыгина для уравнений Эйлера-Пуассона (см. 5 гл. 2).  [c.210]

Замечание 8. При добавлении постоянного гиростатического момента вдоль оси динамической симметрии в (4.25) и (4.26) получаются случаи интегрируемости, соответствующие обобщенным случаям Яхьи и Сретенского в уравнениях Эйлера -Пуассона, интегралы для которых несложно получить из (4.23) при помощи процедуры поднятия, описанной в гл. 4.  [c.219]

В заключение отметим, что для кватернионных уравнений Эйлера-Пуассона как случай Ковалевской , так и случай Горячева-Чаплыгина являются общими случаями интегрируемости. Это позволяет их использовать для некоторых алгебраических конструкций (построение Ь — А-пар и пр.) и установить некоторые нетривиальные взаимосвязи и аналогии соответствующих случаев интегрируемости в классических уравнениях Эйлера-Пуассона ( 7 гл. 5).  [c.219]

Динамика твердого тела изучается на основе общих теорем об изменении кинетической энергии, кинетического момента и количества движения, а также с помощью основных понятий геометрии масс. Показывается, что аппарат динамики системы материальных точек применим для описания движения твердого тела и систем твердых тел. Проясняется вычислительная экономность использования уравнений Эйлера. Традиционно анализируются случаи Эйлера-Пуансо, Лагранжа-Пуассона, Ковгияевской [24]. В качест)зе примера методики по.чучения частных случаев интегрируемости приводятся случаи Гесса и Бобылева-Стеклова [6]. С целью демонстрации приложения развитых методов к практике даются основы элементарной теории гироскопов [14, 41], достаточные для качественного анализа действия гироскопических приборов.  [c.12]


Смотреть страницы где упоминается термин Уравнения Эйлера-Пуассона и интегрируемые случаи : [c.14]    [c.296]   
Смотреть главы в:

Динамика твёрдого тела  -> Уравнения Эйлера-Пуассона и интегрируемые случаи



ПОИСК



Пуассон

Пуассона уравнение

Уравнение Эйлера

Уравнения Пуассона си. Пуассона уравнение

Уравнения Эйлера—Пуассона

Эйлер

Эйлера эйлеров

Эйлера—Пуассона



© 2025 Mash-xxl.info Реклама на сайте