Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сопротивление усталости в исходном состоянии

Сопротивление усталости в исходном состоянии  [c.115]

Влияние усталости на критическую температуру хрупкости стали ВСт.Зсп в зоне термомеханического старения показано на рис. 29, б. В этом случае критическая температура хрупкости Г р зоны старения после сварки в исходном состоянии выше основного материала ВСт.Зсп более чем на 10°С. В процессе работы на усталость Г р основного металла и зоны старения повышаются до 20°С. При использовании результатов исследований [77, 103] следует учитывать, что усталость накапливалась при высокой частоте — 20 Гц, что редко встречается в технике. Повреждаемость металла при малых частотах нагружения может быть выше, так как накопление усталостных повреждений при реальных частотах (до 1000 Гц) развивается более интенсивно. Большинство исследователей считают, что повышение частоты нагружения до 1000 Гц не влияет на предел выносливости, но дальнейшее повышение вызывает рост сопротивления усталости так, при частоте 20.Гц предел выносливости повышается на 40%.  [c.80]


Структура металлов при термоциклировании формируется в несколько стадий. На первой стадии нагревы устраняют дефекты, присутствовавшие в металле в исходном состоянии. Однако под влиянием термических напряжений происходит образование новых дефектов структуры — дислокаций и их скоплений, избыточных вакансий. В результате разупрочнение, имевшее место на первой стадии, сменяется упрочнением. На третьей стадии появляются микротрещины, прогрессирующие от цикла к циклу развитие их приводит к росту крупных магистральных трещин, которые квалифицируются при технической оценке термостойкости как трещины термической усталости. По числу циклов до образования трещин или достижения ими определенных размеров обычно оценивают сопротивление материала термической усталости. О накоплении дефектов при термоциклировании можно судить и по данным изменения физических свойств металлов и сплавов 149, 1851.  [c.13]

Рис. 7.7 Сопротивление усталости сварных соединений из стали 40Х в исходном состоянии (1) и после общей ТЦО (2) Рис. 7.7 <a href="/info/558578">Сопротивление усталости сварных соединений</a> из стали 40Х в исходном состоянии (1) и после общей ТЦО (2)
В процессе нагружения при напряжениях, превышающих предел прочности покрытия, в хроме возникают трещины, ориентированные перпендикулярно действию силового потока, и долговечность деталей определяется временем, которое требуется для их развития. Следует в связи с этим отличать влияние микроскопических трещин в покрытии, образующихся в процессе осаждения хрома, от влияния трещин, которые образуются в покрытии при циклических нагрузках вследствие низкой прочности и пластичности хрома. Микроскопическая сетка трещин, имеющаяся в хромовом покрытии как в исходном состоянии, так н после термической обработки, не может служить причиной снижения сопротивления усталости основного металла, так как наличие очень большого их количества примерно одинаковых размеров и расположенных с большой частотой по поверхности покрытия приводит к значительному  [c.51]

Сопоставление пределов выносливости однотипных сварных соединений из низколегированных сталей показывает, что химический состав и механические свойства сталей практически мало влияют на сопротивление усталости соединений в исходном состоянии (без обработки). Сопротивление усталости соединений практически не изменяется даже после термического упрочнения сталей и зависит главным образом от амплитуды переменных напряжений цикла (табл. 9, при коэффициенте асимметрии г = О Оа = 1/2аг, при / = —1 Оа — (Уг).  [c.122]


Напомним, что кривые ф (х, R) отражают все особенности сопротивления усталости испытуемых образцов такие, как масштабный фактор, состояние поверхности, воздействие агрессивной среды и при необходимости даже влияние концентрации напряжений. В случае, когда уравнение (3.54) используется для проверки прочности, в качестве исходных данных должны использоваться кривые усталости, отвечающие малым вероятностям разрушения.  [c.152]

Формообразование фасонных поверхностей в холодном состоянии методом накатывания имеет ряд преимуществ. Главные из них - очень высокая производительность, низкая стоимость обработки, высокое качество обработанных деталей. Накатанные детали имеют более высокое сопротивление усталости. Это объясняется тем, что при формообразовании накатыванием волокна исходной заготовки не перерезаются, как при обработке резанием. Профиль накатываемых деталей образуется за счет вдавливания инструмента в материал заготовки и выдавливания части его во впадины инструмента. Такие методы сочетают в себе функции черновой, чистовой и отделочной обработок. Их используют для получения резьб, валов с мелкими шлицами и зубчатых мелкомодульных колес.  [c.438]

Область рационального использования. Виброударная обработка ППД приводит к повышению износостойкости, сопротивлению усталости на 15 - 70 %, долговечности в 3 -10 раз в зависимости от условий работы деталей, режимов и технологии упрочнения, материала, исходного состояния поверхности, предыдущей термообработки, контактной жесткости, отражательной способности, коррозионной стойкости и некоторых других свойств.  [c.523]

Изменение сопротивления усталости при значении остаточной деформации больше оптимальной существенно зависит от базы испытания. С увеличением базы испытания при данной температуре отрицательное влияние деформационного упрочнения от увеличения остаточной деформации на характеристики усталости возрастает. Например, при значении остаточной деформации 6% в зависимости от базы испытания 1 млн., 10 млн. и 100 млн. циклов, относительное снижение сопротивления усталости деформированного сплава ЭИ617 при 800° С по сравнению с сопротивлением сплава в исходном недеформированном состоянии составило соответственно 5 15 и 25%. По сравнению с сопротивлением усталости сплава при оптимальной остаточной деформации 6 = 1% для данной температуры эти изменения равнй соответственно 9— 11, 17—18 и 23—33%. В связи с этим при данной температуре в зависимости от базы испытания изменяется и интервал остаточной деформации, при котором сохраняется положительный эффект деформационного упрочнения на усталостную прочность. Так, при 800° С и базах испытания 1 млн., 10 млн. и 100 млн. циклов деформационное упрочнение обеспечивает положительный эффект соответственно при значениях остаточной деформации до б = 6 4 и 2%.  [c.199]

Учитывая, что аустенитная легированная молибденом сталь в исходном состоянии имеет более высокое сопротивление термической усталости и более высокую длительную пластичность по сравнению со сталью, легированной титаном, то термообработку холоднодеформированных гибов из стали Х16Н9М2 проводить не обязательно.  [c.156]

Пределы выносливости балок с двусторонними швами, сваренных электродами ЦМ-7, повысились на 26—35% (серии № 7 и 8), а для балок, выполненных сваркой в среде Oj, —до 40% (серия № 10) по сравнению с пределом выносливости балок с неупроч-ненными швами. В еще большей степени, чем сопротивление усталости, повышается долговечность балок. Так, балка, сваренная в среде СОа в исходном состоянии при 0 = 9 кгс/мм , выдержала до разрушения N = 2,7 10 циклов, а после поверхностного упрочнения швов (при том же напряжении) до появления усталостной трещины — 6,4-10 циклов, т. е. в 24 раза больше (рис. 85, б). Для других уровней напряжений долговечность повысилась в 6—9 раз.  [c.156]

Наплавка на цилиндрические образцы диаметром 60 мм и валы диаметром 180 м из стали 40 проволокой соответственно Св-08А и 12Х18Н9Т снижает сопротивление усталости в 3 раза [40, 92, 94]. Причиной этого снижения является совместное действие растягивающих остаточных напряжений и дефектов сварки. При наплавке по образующей осевые напряжения составили +40 кгс/мм , а тангенциальные + 12 кгс/мм при кольцевой наплавке как осевые, так и тангенциальные напряжения составили +20 кгс/мм [40]. После обкатки роликом валиков, наплавленных по образующей, в поверх ностном слое образца были наведены сжимающие остаточные на пряжения—осевые (—44 кгс/мм ) и тангенциальные (—39 кгс/мм ) В результате этого предел выносливости образцов возрос на 75% У валов диаметром 180 мм с кольцевой наплавкой после об катки роликом предел выносливости повысился по сравнению с исходным состоянием на 116% [92, 94].  [c.241]


Повреждение структуры эвтектического сплава с различными коэффициентами линейного расширения фаз после термоцикли-рования в широком интервале температур показано на рис. 35 и 36. В первом случае псевдобинарная эвтектика Ni — Nb подвергалась воздействию около 1800 циклов в интервале температур 400—1130° С. Испытания проводили в приспособлении для сжигания газа. В поперечном и продольном сечениях материала после испытания видно, что матрица рекристаллизована, а волокнистая фаза разрушена (рис. 35). Во втором случае сплав Со — 15%Сг — Nb подвергался 1500 термическим циклам в интервале температур 400—1130° С путем нагрева в электрической печи сопротивления. Аллотропия матрицы, а также различие в коэффициентах линейного расширения фаз способствуют образованию микроструктуры, характерной для термической усталости (рис. 36). Карбиды, представляющие собой в исходном состоянии длинные и иглообразные кристаллы, повреждаются по мере того, как матрица претерпевает повторные превращения и образуются новые зерна. Б данном случае не следует ожидать излома и дробления волокон из-за высокой прочности карбидов, хотя явно выявляются возникающие при этом высокие локальные напряжения. В более сложных сплавах упрочненных  [c.155]

Представляют интерес проведенные в ИЭС им. Е. О. Патона исследования подобных образцов из стали 14Г2 с пересекающимися швами, позволившие установить области рационального применения высокого отпуска в зависимости от характеристики цикла переменных напряжений. Как видно из результатов указанных, исследований (рис. 138), при симметричном цикле (Ra —I) большим сопротивлением усталости обладают образцы, прошедшие высокий отпуск. При пульсирующем цикле Ra = 0) выносливость тех или иных образцов практически одинакова, а при асимметричном цикле Ra = 0,3) образцы в состоянии после отпуска имели несколько меньшую выносливость, чем исходные образцы.  [c.228]

В работе [174] показано, что в результате предварительной нагрузки (до 22 кгс/мм ) образцов сечение 70 X 12 мм из стали 14Г2 с пересекающимися швами их предел выносливости при симметричном цикле повысился на 50% по, сравнению с исходным после сварки состоянием. Трехкратная предварительная перегрузка до 17 кгс/мм повысила сопротивление усталости при осевой пульсирующей нагрузке соединений швеллеров из стали СтЗкп с фланговыми швами (см. рис. 157) на 45%.  [c.232]

Упруго-пластическая деформация поверхностного слоя в процессе механической обработки вызывает изменение структурночувствительных физико-механических и химических свойств в металле поверхностного слоя по сравнению с исходным его состоянием. В деформированном поверхностном слое возрастают все характеристики сопротивления деформированию пределы упругости, текучести, прочности, усталости. Изменяются характеристики прочности при длительном статическом и циклическом нагружении в условиях высоких температур. Снижаются характеристики пластичности относительное удлинение и сужение, повышается хрупкость (уменьшается ударная вязкость), твердость, внутреннее трение, уменьшается плотность. Металл в результате пластической деформации упрочняется.  [c.50]

Предельное состояние по накоплению усталостного повреждения в смысле образования трещины или полного усталостного разрушения характеризуется достижением величины й некоторого предельного значения а А, которое вообще зависит йот типа материала и от протекания изменения переменных напряжений, характеризуемого соответствующим спектром. Для характеристики сопротивления металла накоплению повреледения не только по числу циклов, но также в напряжениях используются вторичные кривые усталости. На эти кривые наносятся суммарные числа циклов, накопленные на всех уровнях напряжений, необходимые для образования трещины или разрушения, в зависимости от величины одного из напряжений спектра (например, минимального), характеризующего его уровень. При переходе от спектра с одним уровнем к спектру с другим все напряжения спектра пропорционально изменяются. На рис. 5 приведены исходная и вторичная кривые усталости для чугуна. Из вторичной кривой усталости вытекает значение вторичного предела усталости. При соблюдении линейного накопления повреждения, одинакового на всех уровнях, левые ветви исходной и вторичной кривых параллельны.  [c.385]

УСТАЛОСТЬ МАТЕРИАЛОВ, изменение механич. и физ. св-в материала под длит, действием циклически изменяющихся во времени напряжений и деформаций. Изменение состояния материала при усталостном процессе отражается на его механич. св-вах, макроструктуре, микроструктуре и субструктуре. Эти изменения протекают по стадиям и зависят от исходных св-в, вида напряжённого состояния, истории нагружения и влияния среды. На определённой стадии начинаются необратимые явления снижения сопротивления материала разрушению, характеризуемые как усталостное повреждение. Сначала в структурных составляющих материала и по границам их сопряжения (зёрна поликрист. металла, волокна и матрхща композитов, мол. цепи полимеров) образуются микротрещины, к-рые на дальнейших стадиях перерастают в макротрещины либо приводят к окончат. разрушению элемента конструкции или образца для механич. испытаний.  [c.796]


Смотреть страницы где упоминается термин Сопротивление усталости в исходном состоянии : [c.116]    [c.215]    [c.117]    [c.132]   
Смотреть главы в:

Проектирование сварных конструкций в машиностроении  -> Сопротивление усталости в исходном состоянии



ПОИСК



Сопротивление усталости

Усталость



© 2025 Mash-xxl.info Реклама на сайте