Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Упругое полупространство. Вторая краевая задача

Упругое полупространство. Вторая краевая задача 215  [c.215]

В настоящей главе метод сведения задачи теории упругости к обобщенной по И. Н. Векуа краевой задаче Гильберта [1] распространяется на смещанную пространственную задачу для усеченного щара, сферическая поверхность которого жестко защемлена, а на срезе заданы нормальные напряжения, а также на аналогичную задачу для полупространства со сферической выемкой или выступом. Системы функциональных уравнений этих задач преобразуются к системам сингулярных интегральных уравнений. Затем рассматриваются контактные задачи о вдавливании кругового в плане штампа в срез усеченного шара или кольцевого штампа в плоскую часть поверхности полупространства, интегральные уравнения которых в предположении геометрической симметрии области контакта сводятся при помощи метода парных уравнений к интегральным уравнениям Фредгольма второго рода.  [c.239]


В случае одной сосредоточенной силы, нормальной к границе полупространства оно может быть получено наложением особых решений, соответствуюш.их, во-первых, действию сосредоточенной силы в неограниченной упругой среде, во-вторых, линии центров расширения (элементарное решение второго типа). Решение для одной сосредоточенной силы далее легко обобщается с помощью принципа наложения на случай произвольной, распределённой по границе нормальной к ней нагрузки. Второй путь решения заключается в сведении рассматриваемой задачи к некоторой краевой задаче теории потенциала — оказывается (это можно получить, исходя из общего решения в форме П. Ф. Папковича), что задача теории упругости о разыскании напряжённого состояния в полупространстве при заданном значении нормального напряжения на границе полупространства и при отсутствии на ней касательных напряжений и сводится к разысканию одной гармонической функции, обладающей всеми характеристическими свойствами потенциала простого слоя, распределённого по плоской области загружения с плотностью, пропорциональной интенсивности нагрузки.  [c.90]

Вопрос о действии штампа на упругое полупространство, таким образом, сведён к рассмотрению следующей задачи теории упругости со смешанными краевыми условиями во-первых, обращаются в нуль касательные напряжения и tyg по всей плоскости 2 = 0 во-вторых, вне области Q этой плоскости обращается в нуль нормальное напряжение 0 в-третьих, задаётся значение нормального перемещения w точек области Q. В этом задании величины 3 , 8 заранее неизвестны и для их определения должны быть использованы уравнения равновесия штампа (1.7).  [c.254]

Следует вспомнить, что для пространственных задач линейной теории упругости (исключая случаи полупространства и шара) неизвестен способ эффективного представления решения второй краевой задачи при произвольном задании массовых и поверхностных сил. Это исключает возможность разыскания напряженного состояния уже для эффектов второго порядка, определимы лишь некоторые его интегральные характеристики. Доступнее плоские задачи, так как применимость приемов решения задачи линейной теории упругости методами теории функций комплексного переменного не ограничена спецификой задания массовых и поверхностных сил для обширного класса областей. Это позволило получить решения нелинейных задач не только для эффектов второго порядка, но довести их для ряда примеров до величин четвертого порядка (в многочисленных работах Ю. И. Койфмана и др.). Здесь же следует отметить исследование в рамках нелинейной плоской задачи поведения материала в окрестности конца прямолинейной трещины (J. К. Knowles, Е. Sternberg, 1975).  [c.134]


Вопрос о том, относить те или иные задачи к классическим и неклассическим, является су0ъективным. Классическими будем считать задачи динамической механики разрушения, рассматриваемые в рамках идеализированной линейно-упругой модели хрупкого динамического разрушения, которые допускают точные или приближенные аналитические решения. Это задачи для областей, содержащих бесконечно удаленные точки (пространство, полупространство, слой в трехмерном случае плоскость, полуплоскость, полоса в двумерном). Такие задачи могут быть сведены к смешанным краевым задачам для уравнений с частными производными. Для их решения применяются простые и хорошо разработанные методы интегральные преобразования, дуальные интегральные уравнения, теория функций комплексного переменного, метод Винера — Хопфа, интегральные уравнения Фред-гольма второго рода, сингулярные интегральные уравнения. Эти методы подробно изложены в известных курсах математической физики 121, 56, 208, 209, 249, 259, 260 и др.], а также более специальных руководствах [265, 266, 278, 288, 299, 313, 350, 352 и др.].  [c.35]

В большинстве рассмотренных работ, связанных с контактными задачами, предполагалось, что трение между штампом и упругим телом отсутствует. Значительно большие математические трудности представляет другой предельный случай, когда штамп и основание находятся в условиях сцепления (такая задача есть частный случай основной смешанной задачи теории упругости). В отличие от более простых смешанных задач, в этом случае дело сводится к отысканию двух гармонических в полупространстве функций с неразделенными краевыми условиями первого и второго рода. Впервые такая задача для кругового штампа была решена В. И. Моссаковским (1954) путем сведения ее к плоской задаче линейного сопряжения двух аналитических функций. Впоследствии Я. С. Уфлянд (1954, 1967) дал непосредственное решение этой задачи с помощью тороидальных координат и интегрального преобразования Мелера — Фока. В статье Б. Л. Абрамяна, Н. X. Арутюняна и А. А. Баблояна (1966) осуществлен еще один подход к той же задаче, основанный на использовании парных интегральных уравнений. Контактным задачам при наличии сцепления посвящена также работа В. И. Моссаковского (1963). Решение основной смешанной задачи теории упругости для полупространства с прямолинейной границей раздела краевых условий дано Я. С. Уфляндом (1957) с помощью интегрального преобразования Конторовича — Лебедева.  [c.36]


Смотреть страницы где упоминается термин Упругое полупространство. Вторая краевая задача : [c.96]    [c.182]    [c.59]   
Смотреть главы в:

Теория упругости  -> Упругое полупространство. Вторая краевая задача



ПОИСК



I краевые

Задача краевая

Задача краевая вторая

Задача упругости

Полупространство



© 2025 Mash-xxl.info Реклама на сайте