Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Нарушение теоремы единственности

Нарушение теоремы единственности. В замкнутом объеме без потерь, т. е. в закрытом резонаторе с идеально проводящими стенками, в (4.11) и в (4.12) интегралы по 5/ отсутствуют, а остальные слагаемые могут быть равны нулю при  [c.39]

Нарушение теоремы единственности для системы (1.15) на многообразии О происходит в следующем смысле почти через любую точку из О проходит неособая фазовая траектория системы (1.15), пересекая О под прямым углом, а также существует фазовая траектория, полностью совпадающая во все моменты времени с указанной точкой.  [c.64]


О нарушении теоремы единственности. На многообразии О нельзя однозначно разрешить систему (6.5) относительно а, 3. Формально, на О нарушается теорема единственности.  [c.244]

Как упоминалось, вне и только вне О система (6.5) эквивалентна (6.11). Но фактически теорема единственности нарушается лишь на многообразии 0векторное поле (6.11) не определено по причине вырождения сферических координат (v, а, Р) точки D. На многообразии О нарушение теоремы единственности происходит в следующем смысле почти через любую точку О проходит неособая фазо-  [c.244]

Таким образом, в силу доказанной теоремы, единственность решений в задаче Ы имеет место при условии (29.43). При его нарушении, как уже говорилось, однозначной разрешимости краевых задач в общем случае не будет, если даже нагрузки по норме  [c.264]

Возвращаясь к возможности образования ненулевой циркуляции при обтекании твердого тела с острой задней кромкой при наличии в идеальной жидкости ( например, крыла ) поверхности разрыва, обратимся к рис. 89,а, где показано покоящееся тело и приведен ряд замкнутых жидких контуров, имеющих нулевую циркуляцию. Казалось, что и при безотрывном движении крыла циркуляция останется нулевой и движение будет безвихревым. Однако в этом случае имеет место сближение ранее разделенных жидких элементов верхних и нижних контуров ( рис. 89,6 ) вблизи задней острой кромки. Вдоль пунктирной линии касательная составляющая л скорости жидкости терпит разрыв и при сохранении сплошности жидкости без нарушения теоремы В.Томсона в ней возникает поверхностное распределение завихренности — вихревая пелена. Этому возможны возражения, состоящие в том, что обтекание с разрывом скорости не является единственно возможным. В идеальной жидкости допустимо перетекание жидких контуров за острую кромку с сохранением потенциальности поля скорости и отсутствием завихренности. Такое решение может иметь смысл с математической точки зрения. Однако оно приводит к бесконечному значению скорости и бесконечному отрицательному давлению на кромке. Данная ситуация не может существовать с физической точки зрения, поскольку жидкости не выдерживают отрицательных давлений — возникают кавитация и разрыв сплошности. Требование конечности скорости на задней кромке в  [c.224]

Из теоремы Лагранжа следует, что в идеальной жидкости, находящейся под действием объемных сил с однозначным потенциалом и движущейся баротропно, не может быть вихрей, так как нет условий для их образования. Можно сказать и наоборот, что, если вихри путем нарушения ранее перечисленных условий были созданы в идеальной жидкости, то они уже не смогут исчезнуть, и движение сохранит свою вихревую структуру. В действительности приходится постоянно наблюдать как образование, так и исчезновение вихревых движений.. Главной причиной этих явлений служит неидеальность жидкости, наличие в ней внутреннего трения. Как уже ранее упоминалось, в практически интересующих нас случаях внутреннее трение играет роль лишь в тонком пограничном слое на поверхности обтекаемого тела и в аэродинамическом следе тела, т. е. в жидкости, которая прошла сквозь область пограничного слоя и образовала течение за кормой обтекаемого тела. Здесь, в тонком пограничном слое и образуется завихренность жидкости. Иногда в следе за телом завихренность быстро угасает, и поток в достаточном удалении за телом становится вновь безвихревым. В других случаях сошедший с поверхности тела слой завихренной жидкости распадается на отдельные вихри, которые сносятся уходящим потоком и сохраняются даже на сравнительно больших расстояниях от тела. Таковы, например, отдельные вихри, наблюдаемые в виде воронок в реках за мостовыми быками , или пыльные смерчи, возникающие в ветреную погоду. Внутреннее трение не является единственной причиной возникновения вихрей. Так, в свободной атмосфере вдалеке от твердых поверхностей возникают непосредственно в воздухе грандиозные вихри — циклоны и антициклоны. Причиной этих вихреобразований служит отклонение движения воздуха  [c.213]


Доказанная выше теорема интересна скорее в идейном отношении, так как в ряде случаев помогает понять некоторые особенности статистического аппарата. Так, например, с точки зрения статистической суммы не вполне ясно, каким образом могут возникнуть (и вообще возникают ли) нарушения гладкости функции 2=2(9) (разрывы или особенности производных 2 по 0 необходимы для объяснения, например, фазовых переходов первого и второго родов, критических явлений и т. п.), так как каждое слагаемое в ней —гладкая функция температуры ехр — /0 , Единственное, что остается предположить, состоит в том, что такие нарушения могут возникнуть только после совершения предельной статистической процедуры (совершенно так же, как, например, разрывная периодическая функция определяется только всей совокупностью членов разложения в ряд Фурье, каждый из которых непрерывен). Если же подходить к определению 2 с точки зрения доказанной выше теоремы, то проблема возникновения возможных нарушений гладкости функции не возникает вообще эти нарушения могут существовать уже в допредельном по N выражении  [c.394]

Необходимо подчеркнуть, что теорема единственности доказана нами для геометрически линейной постановки задачи теории упругости. Если условие (8.4.8) не выполнено, единственности может не существовать. Это может означать одно из двух о либо принятая модель сплошной среды некорректна, либо материал неустойчив. При- Рис. 8.4.1 мером такого неустойчивого материала служит материал с падающей диаграммой растяжения, подобной изображенной на рис. 8.4.1. Видно непосредственно, что одному п тому же значению напряжения на этой диаграмме соответствуют два разных значения деформации. Вопрос о действительном существовании таких неустойчивых упругих материалов остается открытым диаграммы вида изображенной на рис. 8.4.1 наблюдаются при описании пластического поведения и представляют зависшюсть условного напряжения, т. е. растягивающей силы от деформации. Пример неустойчивости такого рода был рассмотрен в 4.13. Для геометрически нелинейных систем теорема единственности несправедлива нарушение единственности соответствует потере устойчивости упругого тела. Рассмотрению подобного рода задач в элементарной постановке была посвящена вся четвертая глава.  [c.247]

В этом случае некоторые теоремы существования решений полной краевой задачи безмоментной теории формулируется точно так же, как и для оболочки с одним краем. Примером могут служить оболочки, края которых жестко заделаны в обоих тангенциальных направлениях. Как уже говорилось в 17.34, решение полной задачи в этом случае существует и единственно при любой, достаточно гладкой нагрузке, независимо от числа краев (если только они неасимптотические) и даже независимо от знака кривизны срединной поверхности. По-видимому, сохраняется при любом числе краев также и теорема существования, обсужденная в 18.36 надо только требовать, чтобы все края оболочки были неасимптотическими и свободными в обоих нетангенциальных направлениях. Для оболочек положительной кривизны это следует из результатов работ [16—19], в которых теорема доказана при любом числе краев. В 15.24 показано, что теорема остается в силе для оболочек нулевой кривизны и не видно оснований предполагать, что исключение представят оболочки отрицательной кривизны. Более сложным является случай, когда гауссова кривизна оболочки меняет знак, так как при этом может иметь место касание с плоскостью вдоль замкнутой линии, что является нарушением условий теоремы о возможных изгибаниях ( 15.21). Вместе с тем не исключено, что теорема снова станет справедливой при отсутствии такого касания.  [c.263]

Известная теорема К. Эрроу о невозможности утверждает, что нельзя найти такую функцию общественной полезности, которая удовлетворяла бы интересам как отдельных индивидуумов, так и всего общества в целом, и единственным способом выбора, приемлемым при всех обстоятельствах, является передача права выбора диктатору . Действительно, трудно вообразить, что даже отдельная личность может иметь функцию полезности, которая удовлетворяет всем возможным ее выборам при всех обстоятельствах, с которыми она может столкнуться. В работе Эрроу [5] транзитивность предпочтений берется в качестве детерминистической (да, нет) основы согласованности, и ее нарушение рассматривается как логическое противоречие.  [c.66]



Смотреть страницы где упоминается термин Нарушение теоремы единственности : [c.63]    [c.240]    [c.385]    [c.109]   
Смотреть главы в:

Основы теории дифракции  -> Нарушение теоремы единственности



ПОИСК



Единственность

Теорема единственности



© 2025 Mash-xxl.info Реклама на сайте