Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

235 — Механические свойства 236 Назначение 235 — Технологические

Механические свойства и технологические испытания аналогичны указанным для труб бесшовных общего назначения (ГОСТ 301-44),  [c.431]

При разработке технологии сварки жаропрочных материалов особую трудность представляет, как правило, выбор сварочных материалов (электродов и сварочных проволок), обеспечивающих необходимые свойства металла шва. Для работы при высоких температурах металл шва, кроме необходимого уровня механических свойств и технологической прочности, должен обеспечивать также достаточную стабильность структуры и свойств при заданных температурах, обладать необходимым сопротивлением ползучести и жаростойкостью, а также рядом других свойств в соответствии с условиями работы данного узла. При этом критерии оценки пригодности того или иного типа сварочных материалов будут существенно зависеть от назначения данного узла конструкции. Так, например, для сварных конструкций камер сгорания газовых турбин пригодность тех или иных электродов будет определяться прежде всего жаростойкостью металла шва. Ряд сварных узлов турбин (рабочие лопатки, роторы и другие) могут работать под воздействием динамических знакопеременных напряжений. Поэтому для данных сварных соединений должна быть проверена их усталостная прочность.  [c.21]


Виды поставляемого полуфабриката 241 — Коррозионная стойкость 238. 240 — Марки 238 — Модуль нормальной упругости 240 — Назначение 238 — Механические свойства 239 — Технологические свойства 240 — Химический состав 238  [c.380]

Содержит 320 марок сталей и сплавов черных металлов. Для каждой марки указаны назначения, виды поставки, химический состав, механические свойства в зависимости от состояния поставки, температуры испытаний, режимов термообработки, поперечного сечения заготовок, места направления вырезки образца, технологические и физические свойства.  [c.2]

Марочник не заменяет собой действующую нормативно-техническую документацию (ГОСТы, ОСТы, ТУ, РТМ и т. п.). Его основная цель — облегчить конструкторам, технологам, исследователям получение справочных данных об основных свойствах и характеристиках сталей, необходимых для обоснованного выбора марки материала при проектировании изделий и разработке технологии их изготовления. В соответствии с этой целью марочник содержит номенклатуру марок сталей, наиболее широко применяемых на машиностроительных предприятиях, и сведения справочного характера о химическом составе сталей, механических свойствах и твердости заготовок или готовых деталей в зависимости от размеров их поперечного сечения и режима термической обработки, примерном назначении, основных технологических свойствах и т. д.  [c.7]

Материал по каждой марке стали и сплава включает следующие данные заменитель марки стали и сплава, вид поставки, назначение, содержание химических элементов в процентах по массовой доле, температуры критических точек, механические свойства, жаростойкость, коррозионная стойкость, технологические свойства, свариваемость, литейные свойства, температурный интервал ковки и условия охлаждения после ковки, обрабатываемость резанием, прокаливаемость, флокеночувствительность, склонность к отпускной хрупкости.  [c.8]

Механические испытания материалов не следует путать с механическими испытаниями деталей, узлов или конструкций в целом. Если при испытании материалов определяются только свойства материала, то при испытании конструкции определяется не прочность материалов, а прочность конструкций. При механических испытаниях конструкции, с одной стороны, проверяется точность проведенных расчетов, а с другой — правильность назначенных технологических процессов изготовления и сборки.  [c.273]

Вначале специалистам предлагается выбрать наиболее перспективную конструкцию в зависимости от назначения. Затем они должны указать наиболее важные технологические, эксплуатационные и механические свойства материалов, определяющие работоспособность и надежность конструкции. На основании указанных свойств предлагается выбрать материал, указать его структуру и способ упрочнения.  [c.220]

Повышение производительности труда и снижение себестоимости технологических операций при обработке металлов резанием в значительной степени зависят от применяемого режущего инструмента, его конструкции, материала и способа использования. В справочнике приводятся общие сведения о процессе резания, элементах режущего инструмента, механических свойствах и областях применения инструментальных материалов, а также о конструктивных параметрах, назначении и эксплуатационных свойствах резцов, сверл, фрез, протяжек, зуборезного инструмента и абразивов.  [c.3]


Подшипниковые стали — см. также Шарикоподшипниковые стали — Марки и назначение 366, 379 — Обработка давлением горячая — Режимы 372, 378 — Термическая обработка 368, 370—377 --нержавеющие 375—378 — Коррозионная стойкость 377 — Механические свойства 376, 377 — Технологические и физические свойства 376 — Химический состав 375, 378 --низкоуглеродистые цементуемые — Механические свойства и режимы термической обработки 374 — Химический состав и свойства 375 Порошки металлические — Виды, насыпной вес и стоимость 321  [c.438]

Достижение указанных высоких механических свойств и их дифференциация могут быть осуществлены только за счет соответствующей термической и химико-термической обработки деталей. Поэтому при назначении характера и режима этой обработки необходимо, чтобы она удовлетворяла требованиям, предъявляемым к материалу детали условиями ее работы, и отвечала соответствующим технологическим свойствам выбираемого материала (прокаливаемость, склонность к деформации и к закалочным трещинам и т. д.), а также согласовывалась с размерами и конфигурацией деталей.  [c.25]

Сталь (16). Углеродистая сталь (16). Легированная сталь (17). Условное обозначение широко применяемых марок стали (20). Маркировка углеродистой и легированной сталей окраской (21). Свариваемость конструкционной стали (24). Химический состав углеродистой горячекатаной стали обыкновенного качества (25). Механические свойства и результаты технологических испытаний углеродистой стали обыкновенного качества (26). Примерное назначение углеродистой стали обыкновенного качества (27). Механические свойства углеродистой качественной конструкционной стали (27). Примерное назначение качественной конструкционной углеродистой стали (29). Механические свойства конструкционной качественной холоднотянутой (калиброванной) стали (31). Химический состав автоматной  [c.532]

Назначение. Проведение испытаний механических свойств металлов, сплавов и неметаллических материалов, поковок, отливок и деталей на специальных образцах изучение прочности деталей в условиях длительных испытаний на износ, кручение, ползучесть и др. контроль технологических свойств металлов и деталей на выдавливание, изгиб, скручивание, сжатие проведение исследовательских работ по усовершенствованию методов механических испытаний, разработке и внедрению новых методов и новых испытательных машин и приборов.  [c.180]

Паспорт металлов имеет 30 листов. Для удобства пользователей он разбит по смысловым группам общие сведения о марке - назначение, характеристика, химический состав, аналоги (2 листа) виды поставки (4 листа) механические свойства (4 листа) жаропрочные свойства (1 лист) физические свойства (2 листа) технологические свойства - ковочные, сварочные, литейные и другие (4 листа)  [c.56]

Ручная дуговая сварка покрытыми электродами. Учитывая требования к свойствам сварного соединения, выбирается тип электрода, затем (см. гл. 2) по справочным данным или паспорту на электроды, где приводятся их технологические и другие показатели, с учетом условий выполнения сварки и имеющихся источников сварочного тока выбирается марка электрода. Часто выбор марки электродов производится сразу по их паспортным данным. В паспорте на электроды приводятся сведения о их назначении, типичные химический состав и механические свойства металла шва, технологические особенности сварки, рекомендуемые род и сила сварочного тока, производительность наплавки, расход электродов и др. Следует помнить, что химический состав металла шва по его длине изменяется. Это связано с нагревом электрода по мере его расплавления, а значит с изменением скорости его расплавления, т.е. изменяется уо. Геометрические размеры швов задаются по соответствующим ГОСТ или ТУ. Точность их исполнения зависит от квалификации сварщика и проверяется специальным шаблоном. При сварке многопроходных швов стыковых соединений первые проход (корневой) должен выполняться электродами диаметром 3. .. 4 мм для удобства провара корня шва. Следует иметь ввиду, что максимальная площадь поперечного сечения металла шва, наплавленного за один проход 30. .. 40 мм . При сварке угловых швов, за один проход, рекомендуется выполнять швы с катетом 8. .. 9 мм. При необходимости выполнения швов с большим катетом применяется сварка за два прохода и более.  [c.242]

Марки этих электродов, их полное условное обозначение, технологические особенности и назначение приведены в табл. 4.20, а механические свойства наплавленного металла — в табл. 4.21.  [c.119]

Электроды для сварки легированных теплоустойчивых сталей. Стандартные марки этих электродов, их полное условное обозначение, технологические особенности и назначение представлены в табл. 4.27, а механические свойства наплавленного металла при 20 и 520 °С после указанных режимов термообработки — в табл. 4.28.  [c.119]

Стандартные марки электродов для сварки данных сталей, их полное условное обозначение, технологические особенности, назначение, а также структурные классы свариваемых сталей и марки сварочной проволоки для стержня электрода представлены в табл. 4.29, механические свойства металла, наплавленного этими электродами с указанием режимов термообработки — в табл. 4.30, а содержание ферритной фазы в наплавленном металле — в табл. 4.31.  [c.119]


Нестандартные марки электродов, их назначение, развернутые технологические характеристики, марки проволоки, тип наплавленного металла и механические свойства наплавленного металла с указанием режимов термообработки приведены в табл. 4.32 и 4.33 (для сварки нержавеющих высокохромистых сталей), 4.34 и 4.35 (для сварки коррозионностойких аустенитных сталей), 4.36 и 4.37 (для сварки жаростойких аустенитных ста-  [c.157]

Марки электродов, их назначение, технологические особенности, механические свойства наплавленного металла и марки сварочной проволоки приведены в табл. 4.42 [5, 13, 21, 23].  [c.170]

Марка электрода Марка проволоки Механические свойства металла шва при нормальной температуре Назначение и технологические особенности  [c.171]

Механические и технологические свойства, назначение алюминиевых сплавов  [c.530]

Данные по маркам стали располагаются на одном или двух листах. На первом листе приведены химический состав по ГОСТ или ТУ, механические свойства в зависимости от сечения и режима термической обработки, примерное назначение марки стали и технологические свойства. На втором листе приведены дополнительные справочные данные по прокаливаемости механическим свойствам в зависимости от температуры отпуска, механическим свойствам при повышенных температурах, физическим свойствам, значениям ударной вязкости при отрицательных температурах, усталостным характеристикам и другим свойствам.  [c.4]

Представлены основные технологические схемы получения порошков железа и легированных сталей. Рассмотрены принципы проектирования изделий, выбора материала и технологии в зависимости от назначения и предполагаемого применения изделия. Описано горячее статическое и динамическое прессование порошков с целью получения малопористых изделий. Приведены физико-механические свойства спеченных сталей и области их применения, а также основные технико-экономические показатели эффективности использования порошков.  [c.2]

Контроль качества отливок. Кроме промежуточного контроля, проводимого на различных стадиях технологического процесса, отливки проходят окончательный контроль для определения соответствия их требованиям технических условий. Проверяют геометрические размеры отливок, механические свойства, устанавливают отсутствие внешних, поверхностных и внутренних дефектов. В зависимости от назначения и ответственности отливок производят массовый и выборочный контроль. Систематический контроль размеров отливок позволяет своевременно предупредить брак из-за износа или коробления моделей и стержневых ящиков.  [c.276]

В зависимости от назначения и механических свойств специальные бронзы по технологическим признакам также делят на деформируемые и литейные.  [c.211]

Материал, выбранный для изготовления детали, должен обосновываться подетальным расчетом на прочность. В основу расчета берут действующие нагрузки и механические свойства материала. В зависимости от формы детали может быть назначен один или несколько технологических процессов ее изготовления, поэтому при выборе материала важное значение приобретают и технологические свойства материала обрабатываемость резанием, свариваемость, уп-рочняемость при термообработке, линейные свойства, способность к ковке, штамповке (пластические свойства и зависимость их от температуры нагрева), способность к гибке, паянию и т. д.  [c.117]

Машипоспроительные стали и сплавы специализированного назначения характеризуются их механическими свойствами при низких и высоких температурах физическими, химическими и технологическими свойствами. Они могут быть использованы для эксплуатации и (ч обых условиях (при температурах ниже О °С, при нагреве, динамических нагрузках и т. п.).  [c.16]

Толщина стенок и их сопряжения. Толщина стенки отливки определяется совокупностью конструктивных и технологических факторов. При назначении толщины стенок отливки необходимо выбирать наименьшую, обеспечивающую требуемую расчетную прочность, а также учитывать, что механические свойства металлов и сплавов в деталях, отлитых по выплавляемым моделям, характеризуются пониженной прочностью и пластичностью в тонких стенках. Поэтому, если тонкостенные детали ранее изготовляли из поковок или проката, а затем переводили на литье по выплав,дяе-мым моделям, то толщины стенок в отливках должны назначаться на 20 - 30% больше или при сохранении толщины стенки следует подобрать другой, более прочный сплав.  [c.137]

Химический состав оловянного порошка (241). Гранулометрический состав оловянного порошка (241). Химический состав кобальтового порошка (241). Химический состав электролитического никелевого порошка (241). Химический состав серебряного порошка (242). Гранулометрический состав серебряного порошка (242). Примерное назначение стандартных металлических порошков (242). Классификация метаплокерамических изделий (244). Условное обозначение железографита (247). Физико-механические свойства желе-зографита (247). Примерное назначение железографита (248). Характеристика фрикционных желез ографитовых материалов (249). Физико-механические свойства фрикционных металлокерамических материалов, разработанных ЦНИИТмаш (249). Физико-механические свойства фрикционных металлокерамических сплавов (250). Физико-механические свойства металлокерамических конструкционных материалов (252). Физико-механические свойства металлокера- шческих контактных материалов (253). Технологические режимы изготовления типовых металлокерамических изделий (254). Реншмы токарной обработки металлокерамических изделий (255).  [c.536]

Применение пластмасс для технологической оснастг и (311). Синтетические клеи, применяемые в машиностроении (311). Рекомендуемые марки клея для склеивания различных материалов и минимальная рабочая температура (314). Физико-механические свойства синтетических клеев (315). Режимы склеивания спнтетическиии клеями (316). Клеящая способность карбинольного клея (316). Примерное назначение синтетических клеев (317).  [c.537]

Назначение. Лаборатория должна обеспечить контроль следующих свойств пластмасс технологических, характеризующих перераба-тываемость пластмасс физико-механических и диэлектрических, характеризующих качество изделий из пластмасс. К технологическим свойствам относят насыпную плотность, коэффициент уплотнения, гранулометрический состав, таблетируемость реактопластов, текучесть реактопластов, скорость отверждения реактопластов, текучесть расплава термопластов (индекс расплава), усадка.  [c.168]

При разработке рецептур резин на основе каучуков общего назначения после определения полимерной основы необходимо рассмотреть вопрос о возможности применения регенерата. Введение данного продукта приводит к существенному снижению стоимости и оказывает положительное влияние на большинство технологических свойств резиновых смесей (текучесть, шприцуемость, плато вулканизации, каркасность). Однако, особенно при введении больших количеств, уменьшаются эластичность, прочность при растяжении, износостойкость и усталостная прочность. Для разрабатываемой резины можно рекомендовать применение регенерата, но для уменьшения его отрицательного влияния на физико-механические свойства необходимо использовать только высококачественные марки, полученные из протекторов изношенных покрышек термомеханическим методом или методом диспергирования (марки РПТ или РПД), в количестве не более 10—15 ч. (масс.).  [c.51]


Содержит около 600 марок сталей и сплавов чёрных металлов. Для каждой марки указаны назначение, химический состав, механические свойства в зависимости от состояния поставки, температуры, режимов термообработки, поперечного сечения заготовок, места и направления вырезки образца, описан комплекс технологических свойств. Приведены системы маркировки сталей по Евронормам и национальным стандартам. В приложениях даны физические свойства механические свойства в зависимости от температур отпуска, испытания, ковочных жаропрочные свойства марки, характеристики и области применения электротехнических и транспортных сталей зарубежные материалы, близкие по химическому составу к отечественным перевод твёрдости по Бринеллю, Роквеллу, Виккерсу и Шору соответствие различных шкал температур.  [c.4]

Применение двух- и многослойных сталей и сплавов, обладающих взаимодополняющими физико-механическими свойствами, позволяет значительно снизить металлоемкость элементов конструкций. Проблема проектирования, создания и эксплуатации биметаллических конструкций повышенного ресурса, в частности высоконагру-женного оборудования АЭС, делает весьма актуальными экспериментальные исследования, направленные на разработку методов оценки несущей способности таких конструкций не только по интегральным характеристикам прочности, но и с учетом наличия трещиноподобных дефектов на стадиях инициации разрущения, а также распространения и остановки трещин. Развитие методов определения критериев сопротивления разрушению и их анализ необходимы для оптимизации свойств биметалла путем правильного выбора сочетания разнородных составляющих соединения, назначения технологического способа его изготовления и определения рационального соотношения толщин основного металла и плакирующего слоя. Кроме того, это необходимо при проведении расчетов на прочность и оценке ресурса биметаллических элементов конструкций, определении допускаемых размеров дефектов, выборе методов и средств дефектоскопии.  [c.107]

Полученные данные о взаимосвязи структуры и механических свойствах жаропрочных титановых сплавов были положены в основу при разработке технологических процессов изготовления по.дуфлбрикатов с учетом мх назначения.  [c.266]

Имеется довольно обширная литература, посвященная теплопроводности в гетерогенных средах, появление которой объясняется главным образом технологической важностью применения таких материалов в качестве теплоизоляции. Изоляционные материалы на основе минеральных волокон можно рассматривать как одну из разновидностей композиционных материалов, в которых окружающий воздух играет роль непрерывной матрицы. Вследствие наличия в таких материалах двух фаз — газообразной и твердой— их называют двухфазными материалами. Однако использо-Bainie такого термина для композиционных материалов, в которых оба компонента находятся в твердом состоянии, оказалось ие вполне точным. Само понятие композиционный уже указывает на присутствие в таком материале более одного компонента и оказывается вполне достаточным для его характеристики. Несмотря на несомненное принципиальное сходство между волокнистыми теплоизоляциоными и композиционными материалами, имеется и существенное различие, оказывающее заметное влияние на свойства, связанные с явлениями переноса в композиционных материалах. В изоляционных материалах непрерывная фаза (воздух или какой-либо другой газ) находится в непосредственном контакте с волокнистым твердым телом. В композиционных материалах конструкционного назначения матрица и армирующий наполнитель приводятся в контакт в процессе формования под действием заданного давления и температуры. Любой дефект, образующийся в процессе формования, например иесмачивание части армирующего наполнителя полимерным связующим, присутствие воздушных включений на поверхностях уплотненного волокнистого мата, препятствует равномерному распределению компонентов и в дальнейшем приведет к возникновению сопротивления на границе раздела фаз. Кроме того, очевидно, что в течение определенного периода времени под действием, например, влаги, влияние этих неблагоприятных условий будет увеличиваться. Хотя этот эффект может быть легко обнаружен, поскольку он приводит к ухудшению механических свойств композиционных материалов, оказывается, что в литературе отсутствуют какие-либо сведения о его влиянии на тепло- и электропроводность.  [c.287]

Соотношение между упрочняющим и связующим компонентами меняется в зависимости от природы и текстуры наполнителя, смачивающей способности и монолитности матрицы, а также от назначения материала. Содержание наполнителя в композициях конструкционного назначения с ориентированными непрерывными волокнами составляет 60—80% (объемных), а с хаотическим расположением дискретных волокон и нитевидных кристаллов не превышает 20—30% (объемных), что связано с технологическими трудностями плотной уТтаковки дискретных наполнителей, характеризующихся широким диапазоном длины и диаметра монокристаллов полигональной формы. На рис. 1 показана зависимость характеристик механических свойств эпоксибороволокнита КМБ-1, упрочненного непрерывными ориентированными борными волокнами, от их содержания.  [c.587]

В докладе представлены сравнительные данные по изучению физико-химических и физико-механических свойств различных полимерных покрытий подобного назначения, используемых в отечественной практике для изоляции магистральных трубопроводов. Дан анализ применимости некоторое технологических методов для изготовления да олойных полимерных лент, приведен прогноз долговечности покрытия в рабочих условиях эксплуатации тргбоцровода.  [c.204]

Как мы уже отмечали, на начальной стадии использования железа и стали в строительных сооружениях и в машинострое-пии возникла необходимость в экспериментальном изучении механических свойств этих материалов. В первое время испытания ограничивались обычно определением предела прочности (временного сопротивления), но скоро обнаружилось, что свойства железа и стали зависят и от тех технологических процессов, которым они подвергаются при изготовлении, и что во всяком случае знания одного предела прочности недостаточно, если (тоит задача подобрать надлежащий материал для того или иного конкретного назначения. Более глубокое и детальное исследование механических свойств материалов приобрело существенно ажное значение для практики. Подобные испытания требуют специального оборудования, и мы увидим, что рассматриваемый нами период характерен быстрым ростом сети специальных лабораторий для испытания материалов, возникавших одна за другой и разных странах.  [c.331]

Р-ежимы ТЦО различаются как по назначению, так и по характеру структурных превращений, температурному диапазону термоциклирдвання, а также наличием дополнительных воздействий. Основными задачами технологических режимов ТЦО являются измельчение микроструктуры и сфероидизация избыточных фаз, повышение (или пойижёние) плотности дислокаций, прохождение релаксационных процессов, улучшение показателей физико-механических свойств. При этом возможно решение различных задач материаловедения и машиностроения, а именно замены дорогостоящих видов материалов более Дешевыми повышения надежности и работоспособности деталей машин и механизмов размерной стабильности деталей точного маЩиио- и приборостроения поверхностного упрочнения деталей гомогенизации слитков перед прессованием устранения ликвационной неоднородности и др.  [c.25]

По определенным механическим свойствам наплавленного металла и металла сварного соединения, специальным свойствам швов (коррозионной стойкости, крипоустойчивости и т. п.) электроды делятся на типы, в зависимости от которых определяются назначение и область применения электродов. Каждому типу могут соответствовать одна или несколько промышленных марок электродов с определенными технологическими свойствами, составом электродного покрытия, маркой проволоки. На каждую марку электрода составляется паспорт, регламентирующий специальные свойства электрода. Оптовые цены на металлические электроды даны по прейскуранту Л 01-05, введенному в действие с 1 июля 1967 г. В оптовых ценах учтены все расходы, связанные с доставкой электродов от предприятий-поставщиков до станции (порта, пристани) назначения предприятий-потребителей. В районы Дальнего Востока электроды поставляются с надбавкой к оптовым ценам по 25 руб. на I т.  [c.4]

Применение покрытий при горячей деформации металла должно по возможности обеспечивать снижение усилий штамповки и прессования заготовок, износа инструмента, теплоизоляцию заготовок и инструмента, высокое качество поверхности получаемых полуфабрикатов. Защитные покрытия, например содержащие стеклофазу, обладают при высоких температурах свойством уменьшать коэффициент трения и износ трущихся поверхностей заготовок и инструмента (штампов, матриц, фильер и т. п.). Это свойство проявляется, когда между трущямися поверхностями имеется достаточно толстый слой покрытия, содержащего жидкую фазу. Смазочное действие покрытий в этом случае определяется жидкостным трением и подчиняется законам гидродинамики. Основным параметром, определяющим смазочное действие жидкости в условиях, когда внешнее трение переходит во внутреннее трение жидкости, является вязкость жидкости. Смазочное действие покрытий определяется тем, что они разъединяют трущиеся поверхности и способствуют переходу от внешнего трения к внутреннему вследствие вязкого или пластичного течения слоев самих покрытий. В некоторых работах отмечалось, что толщина слоя стеклосмазки, а не вязкость определяет ее смазочное действие. Покрытия, главное назначение которых состоит в защите от окисления при нагреве, могут уменьшать трение, износ инструмента, усилия при деформировании металла. Одновременно с указанным защитно-технологические покрытия повышают качество поверхности заготовок, способствуют получению более однородных механических свойств, служат как теплоизолятор, уменьшают скорость охлаждения заготовок и разогрева инструмента.  [c.113]



Смотреть страницы где упоминается термин 235 — Механические свойства 236 Назначение 235 — Технологические : [c.146]    [c.8]    [c.536]    [c.541]    [c.682]   
Машиностроительное стали Издание 3 (1981) -- [ c.0 ]



ПОИСК



1050—1150 °С — Виды поставляемого полуфабриката 311 — Марки 308 Механические свойства 309 — Назначение 308 — Свариваемость 310 Технологические свойства 310 — Химический состав 309 — Цены

13 — Назначение свойствами — Механические

158 — Механические свойства 153154—Назначение 153, 156, 158 Полосы прокаливаемости 155—157 Предел выносливости 154, 157 —Сортамент 159 — Технологические свойства 155, 157, 159 — Режимы термообработки 155, 157 — Химический состав

158 — Механические свойства 153154—Назначение 153, 156, 158 Полосы прокаливаемости 155—157 Предел выносливости 154, 157 —Сортамент 159 — Технологические свойства 155, 157, 159 — Режимы термообработки 155, 157 — Химический состав пружин 151—Динамическая прочность пружин 151 — Испытание пружин на релаксацию 151 — Коэффи

158 — Механические свойства 153154—Назначение 153, 156, 158 Полосы прокаливаемости 155—157 Предел выносливости 154, 157 —Сортамент 159 — Технологические свойства 155, 157, 159 — Режимы термообработки 155, 157 — Химический состав термообработки

168 - свойства и назначение

168 - свойства и назначение и назначение

235 — Механические свойства 236 Назначение 235 — Технологические свойства 237 — Химический состав

235 — Цены повышенной твердости — Виды поставляемого полуфабриката 241 Коррозионная стойкость 238 — Коэффициент линейного расширения 240 Марки 237—238 — Механические свойства 239 — Модуль нормальной упругости 240 — Назначение 237—238 Технологические свойства 240 — Химический состав 238 — Цены

249 — Марки 247—248 — Механические свойства 248 — Назначение 247248 — Режимы термообработки 248 Технологические свойства 249—250 Химический состав

339 — Механические свойства 337339 — Назначение 337 — Предел ползучести 339 — 340 — Температура применения 337 — Технологические

347 — Магнитные свойства 346 — Марки 346 — Механические свойства 346 Назначение 346 — Технологические

347 — Магнитные свойства 346 — Марки 346 — Механические свойства 346 Назначение 346 — Технологические поставляемого полуфабриката 348 Магнитные свойства 347 — Марки

347 — Магнитные свойства 346 — Марки 346 — Механические свойства 346 Назначение 346 — Технологические свойства 347 — Цены

53 , 59 — Механические свойства 5657, 60—62 — Назначение 55, 59 Режимы термообработки 56, 61 — Предел выносливости 57 , 62 — Температура критических точек 60 — Технологические свойства 59, 63 — Химический состав

53 , 59 — Механические свойства 5657, 60—62 — Назначение 55, 59 Режимы термообработки 56, 61 — Предел выносливости 57 , 62 — Температура критических точек 60 — Технологические свойства 59, 63 — Химический состав ударных нагрузках — Марки 63 — Механические свойства 65, 67 — Назначение 63—64 — Предел выносливости

900—1000 °С — Виды поставляемого полуфабриката 311—Марки 306 Механические свойства 307 — Назначение 306 — Технологические свойства

Жаропрочные для работы при температуре 650850 °С — Виды поставляемого полуфабриката 296 — Длительная прочность 293—294 — Коэффициент линейного расширения 294 — Марки 289290 — Механические свойства 292 Модуль нормальной упругости 294 Назначение 289—290 — Предел прочности 293—294 — Твердость 293 Теплопроводность 294 — Технологические свойства 295 — Химический

Коррозионно-стойкие стали для применения в средах повышенной и высокой агрессивности для сварных конструкций, работающих в кислотах Коррозионная стойкость 259 — Коррозионные среды 260 — Марки 257258 — Механические свойства 259 Назначение 257—258 — Режимы термообработки 259 — Технологические

Коррозионно-стойкие стали для применения в средах повышенной и высокой агрессивности для сварных конструкций, работающих в кислотах Коррозионная стойкость 259 — Коррозионные среды 260 — Марки 257258 — Механические свойства 259 Назначение 257—258 — Режимы термообработки 259 — Технологические свойства 261 — Химический состав

Коррозионно-стойкие стали для применения в средах средней агрессивности для сварной аппаратуры — Виды поставляемого полуфабриката 254 Коррозионная стойкость 251—252 Марки 250—251 — Механические свойства 253 — Назначение 250—251 — Режимы термообработки 253 — Технологические свойства 253 — Химический

Механические Технологические свойства

Назначение, химический состав, механические свойства и технологические пробы стали обыкновенного качества

Свойства технологические



© 2025 Mash-xxl.info Реклама на сайте