Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вращательные спектры двухатомных молекул

ВРАЩАТЕЛЬНЫЕ СПЕКТРЫ ДВУХАТОМНЫХ МОЛЕКУЛ  [c.57]

КОЛЕБАТЕЛЬНО-ВРАЩАТЕЛЬНЫЕ СПЕКТРЫ ДВУХАТОМНЫХ МОЛЕКУЛ  [c.62]

При воздействии видимого или ультрафиолетового излучения на вещество молекулы переходят из основного электронного состояния Ео в более высокие энергетические состояния ь 2, 3, Еп. Каждый такой переход сопровождается также изменением колебательных и вращательных состояний. Образующиеся электронные спектры поглощения во многом похожи на электронно-колебательно - вращательные спектры двухатомных молекул, но они гораздо сложнее и для них чаще наблюдаются области непрерывного поглощения из-за многочисленных отталкивательных электронных состояний. Расшифровка вращательной структуры таких спектров и определение по ним молекулярных постоянных является очень сложной проблемой, которая решена для довольно ограниченного круга соединений.  [c.94]


Каковы правила отбора для переходов между колебательными состояниями полосатых (электронно-колебательно-вращательных) спектров двухатомных молекул  [c.104]

С какого значения У начинается Р-ветвь в колебательно-вращательном спектре двухатомной молекулы  [c.107]

ЭЛЕКТРОННО-КОЛЕБАТЕЛЬНО-ВРАЩАТЕЛЬНЫЕ СПЕКТРЫ ДВУХАТОМНЫХ МОЛЕКУЛ ( 13)  [c.233]

Основные закономерности вращательного движения двухатомных молекул проявляются и во вращательных спектрах многоатомных молекул, однако общая картина спектра при этом более сложная.  [c.236]

Теория двухатомных молекул показывает, что при отсутствии моментов у ядер часть вращательных состояний не осуществляется, в результате чего во вращательной структуре полосы должна выпадать каждая вторая линия. Это, действительно, наблюдается в ряде спектров, например в спектрах двухатомных молекул Не" — Не , и служит доказательством  [c.578]

Как видно, изучение спектров двухатомных молекул является важным подспорьем при определении свойств ядер. Во-первых, существенной является возможность получить верный критерий того, равен ли момент / данного ядра нулю или нет выпадение каждой второй линии во вращательной структуре молекулярной полосы с несомненностью указывает на равенство нулю ядерного момента I. Изучение линий атомного спектра такого критерия не дает. Отсутствие сверхтонкой структуры линий еще не является гарантией того, что для ядра исследуемого атома 7 = 0, Ширина расщепления зависит от величины магнитного момента ядра x , и при малом его значении структура может оказаться за пределами разрешающей способности применяемой аппаратуры. Наконец, изучение сверхтонкой структуры атомных линий не дает сведений о том, какой статистике подчиняются ядра чередование же интенсивностей вращательных линий в полосах двухатомных молекул позволяет решить и этот вопрос.  [c.579]

Каковы правила отбора для переходов между вращательными состояниями двухатомных молекул в случае спектров поглощения в далекой ИК-области  [c.104]

Не проявляются ни в ИК-спектрах, ни в спектрах КР. 12/2. Каково выражение для термов вращательной энергии двухатомной молекулы  [c.105]

Каковы относительные интенсивности стоксовых и антистоксовых линий в колебательных и вращательных КР-спектрах двухатомных. молекул при комнатных температурах В каком случае эти различия больше Приведите наиболее полный ответ.  [c.114]

Вращательная энергия двухатомной молекулы. Микроволновые спектры и вращательные спектры комбинационного рассеяния. Определение межъядерных расстояний из вращательных спектров. Соотнощение между главными моментами инерции в многоатомных молекулах.  [c.266]


Общие замечания. Изучение спектров двухатомных молекул дает подробные сведения об их вращательных, колебательных и электронных уровнях энергии зная эти уровни энергии, можно определить точные значения между-атомных расстояний, частот колебаний и силовых постоянных, энергий диссоциации и других величин, характеризующих структуру двухатомных молекул (см. книгу автора Молекулярные спектры и структура молекул , I. Двухатомные молекулы )). Подобную же информацию о структуре многоатомных молекул можно почерпнуть, изучая их спектр. В настоящей книге рассматриваются те сведения, которые вытекают из изучения инфракрасных и комбинационных спектров многоатомных молекул ). Следующую книгу намечено посвятить данным, получаемым путем изучения видимых и ультрафиолетовых (электронных) полосатых спектров. Для многоатомных молекул часто положение сильно осложняется наличием нескольких междуатомных расстояний, нескольких силовых постоянных, нескольких величин энергии диссоциации и т. д., которые обычно приходится определять одновременно. Подобному усложнению структуры в общем случае соответствует весьма значительное усложнение спектров многоатомных молекул по сравнению со спектрами двухатомных молекул. Поэтому было бы нецелесообразным начинать изложение с опытных закономерностей, как это можно делать в случае двухатомных молекул. Вместо этого мы сначала изложим теорию, а затем применим ее для интерпретации наблюденных спектров. Так же, как и в книге Молекулярные спектры I, мы в основном ограничиваемся спектрами газов и паров.  [c.11]

Основные свойства инфракрасного спектра двухатомной молекулы могут быть описаны с помощью понятий о возможных колебательных и вращательных состояниях молекулы. Двухатомная молекула может одновременно вращаться и колебаться, а этом случае вращательные и колебательные энергии складываются, определяя в совокупности систему разрешенных энергетических уровней. Это упрощенное представление разрешенных изменений состояний двухатомной молекулы верно лишь приблизительно.  [c.322]

Как было показано ранее, некоторые особенности вращательного и колебательного движений молекул удается объяснить на основе классической теории взаимодействия света с веществом. В противоположность этому электронное движение и электронные спектры могут быть рассмотрены достаточно строго только в рамках квантовомеханических представлений. Как и прежде, рассмотрение начнем с двухатомных молекул.  [c.242]

Для большинства известных двухатомных молекул межъядерные расстояния находятся в диапазоне 0,74 А (Нг) — 4,5 А (Сзг), а расстояние между линиями вращательного спектра примерно от 0,01 до 120 см->.  [c.61]

Могут ли в полосах колебательно-вращательных спектров поглощения двухатомных молекул существовать канты и при каких условиях  [c.108]

Какой из. приведенных на рисунке спектров является вращательным КР-спектро.м двухатомной молекулы  [c.110]

Чисто колебательных спектров многоатомных молекул не существует. Из-за большой заселенности нижних вращательных состояний всегда наблюдаются колебательно-вращательные спектры. Как и в двухатомных молекулах, каждое колебательное состояние имеет свой собственный (и довольно сложный в случае асимметричного волчка) набор вращательных состояний. Поэтому колебательно-вращательные спектры многоатомных молекул имеют весьма сложную структуфу. При недостаточно высокой разрешающей способности спектральных приборов вращательную структуру  [c.89]

Как изменяются расстояния между линиями чисто враша-тельного КР-спектра двухатомной молекулы (в приближении жесткого ротатора) при увеличении вращательного квантового числа /  [c.107]

Электронная энергия двухатомных молекул. Электронные (полосатые) спектры двухатомных молекул. Колебательная и вращательная структура электронных спектров. Таблица Деландра. Определение частот колебаний. Спектральные методы определения энергии диссоциации двухато. шых молекул. Принцип Франка — Кондона на примере двухатомных молекул.  [c.267]


За последнеэ время за рубежом был издан ряд монографий, посвященных спектрам атомов и молекул. Однако большинство из них нэ представляет особой ценности (некритический отбор материала, неполнота приводимых сведений, односторонность изложения). В этом отношении выгодно выделяются книги, написанные Герцбергом — крупным специалистом в области атомной и молекулярной спектроскопии. Перу Герцберга принадлежит серия книг по анализу спектров Атомные спектры и строение атомов , Молекулярные спектры и строение двухатомных молекул , Колебательные и вращательные спектры многоатомных молекул . Первая книга уже издана на русском языке, а треть предлагается в настоящее время вниманию советского читателя. (Отметим также, что автором обещана еще четвертая книга, завершающая серию по молекулярным спектрам Электронные спектры многоатомных молекул .)  [c.6]

Первые два тома выпущены в перевод на русский я шк Издательством пнострап-ной лптературы в 1949 г. (Г. Г е р ц б е р г, Спектры п строение двухатомных молекул и Колебательные и вращательные спектры многоатомных молекул ).  [c.5]

Эта книга — третий и завершающий том серии Молекулярнме спектры и строение молекул . Первый том серии, Спектры и строение двухатомных молекул , появился в 1939 г., а второй том, озаглавленный Колебательные и вращательные спектры многоатомных молекул , был опубликован в 1945 г. [22,23]. Переработанное издание первого тома вышло в 1950 г.  [c.7]

Все полосы, связанные с колебательными переходами, рассмотренными в разд. 2, имеют тонкую структуру, которая обусловлена различными возможными вращательными переходами —точно так же, как и в случае двухатомных молекул. Часто эта тонкая структура не разрешена либо из-за того, что она слишком тесна и ее разрешение невозможно с помощью имеющихся средств, либо же по причине значительного уширения линий из-за предиссоциации. Оба эти обстоятельства чаще имеют место в электронных спектрах многоатомных молекул, чем в спектрах двухатомных молекул, так как моменты инерции многоатомных молекул обычно большие и существуют лучшие возможности для предиссоциации (гл. IV). Даже если предиссоциа-ция не происходит, для тяжелых молекул допплерова ширина вращательных линий может превышать расстояния между ними, и, конечно, в этом случае разрешение невозможно.  [c.183]

Правило отбора для колебательхю-вращательного спектра гласит А/ = О, 1. Колебательно-вращательная энергия двухатомной молекулы в модели жесткого ротатора — гармонического осциллятора определяется соотношением  [c.145]

Вращательные спектры формируются при квантовых переходах между вращат. уровнями энергии молекулы. Их наблюдают обычно в поглощении методами микроволновой спектроскопии, реже в испускании и комбинац. рассеянии. Для двухатомной и линейной мно-  [c.202]

Вращательная структура колебательных спектров. В газовой фазе при комнатной темп-ре вращат. уровни энергии молекул заселены в соответствии с Больцмана распределением. Поэтому изменение колебат. анергии сопровождается изменением вращат. энергии. Полосы поглощения двухатомных молекул состоят из двух ветвей — Л и Р, соответствующих переходам с ДУ == -fl, ДУ = —1 Q-ветвъ (ДУ = 0) запрещена.  [c.204]

ФРАНКА—КОНДОНА ПРИНЦИП—утверждает, что электронные переходы в молекулах происходят очень быстро по сравнению с движением ядер, благодаря чему расстояние между ядрами и их скорости при электронном переходе не успевают измениться. Ф.— К. п. соответствует адиабатическому приближению и основан на приближённом разделении полной энергии молекулы на электронную энергию и энергию движения ядер (колебательную и вращательную), согласно Борна—Оппенгеймера теореме. По Ф.— К. п. в простейшем случае двухатомной молекулы наиб, вероятны электронные переходы, изображаемые вертикальными линиями на диаграмме зависимости потенц. энергии от межъядерного расстояния для двух комбинирующих электронных состояний (см. рис. 3 при ст. Молекулярные спектры). Впервые Ф.— К. п. сформулирован Дж. Франком (1925) на основе полуклассич. представлений, а Э. Кондон дал (1926) его квантовомеханич. трактовку.  [c.372]

Рис. 1.8. С.хсма энсргстнчсских состояний двухатомной молекулы — различные электронные состояния — различные колебательные состояния Ег — различные вращательные состояния г — переходы, соответствующие электронно-колсбательно-вращательному спектру Хс, г— переходы, соответствующие колебательно-вращательному спектру V, — переходы, соответствующие вращательному спектру Рис. 1.8. С.хсма энсргстнчсских состояний <a href="/info/22546">двухатомной молекулы</a> — различные <a href="/info/22664">электронные состояния</a> — различные <a href="/info/14660">колебательные состояния</a> Ег — различные <a href="/info/14659">вращательные состояния</a> г — переходы, соответствующие электронно-колсбательно-<a href="/info/22670">вращательному спектру</a> Хс, г— переходы, соответствующие <a href="/info/322370">колебательно-вращательному спектру</a> V, — переходы, соответствующие вращательному спектру
Кроме рассмотренных полосатых спектров испускания и поглощения существуют спектры флуоресценции паров двухатомных молекул, возбуждаемые мощными монохроматическими лампами или лазерами. Если узкая монохромагическая линия совпадает с каким-либо электронно-колебательно-вращательным переходом, разрешенным правилами отбора (см. 10), то при поглощении света существенная часть молекул переходит в возбужденное электронное состояние Е/ с квантовыми числами v и J (рис. 1.34), а оттуда через примерно 10 с молекулы спонтанно переходят в нижележащие состояния согласно общим правилам отбора (см. 10). Если электронный переход относится к типу Е—2, то в спектре будет наблюдаться серия постепенно сходящихся дублетов (см. рис. 1.34). Компоненты дублетов обусловлены линиями Р- и / -ветвей (согласно правилу отбора Л/ = 1). Расстояния между дублетами примерно равны AG +mi- По схождению дублетов в сторону больших длин волн можно определить  [c.80]


Таким образом, наиболее полная информация об энергетических состояних двухатомных молекул содержится в электронно-колебательно-вращательных спектрах. В настоящее время иссле-  [c.81]


Смотреть страницы где упоминается термин Вращательные спектры двухатомных молекул : [c.235]    [c.192]    [c.5]    [c.129]    [c.319]    [c.437]    [c.297]   
Смотреть главы в:

Молекулярная спектроскопия  -> Вращательные спектры двухатомных молекул



ПОИСК



Колебательно-вращательные спектры двухатомных молекул

Колебательно-вращательные спектры двухатомных молекул Электронно-колебательно-вращательные спектры двухатомных молекул

Молекулы двухатомные

Определение энергии водородной связи (теплоты ассоциации) паров уксусной кислоты по ИК-спектрам поглощеРасчетные задачи Вращательные спектры двухатомных молекул

Спектр молекулы

Спектры вращательные

Электронно-колебательно-вращательные (полосатые) спектры двухатомных молекул. Принцип Франка—Кондона

Энергетические состояния молекулы Вращение двухатомных молекул. Вращение многоатомных молекул. Вращательные спектры. Колебания двухатомных молекул. Колебания многоатомных молелекул. Вращательно-колебательные спектЭлектронные спектры молекул



© 2025 Mash-xxl.info Реклама на сайте