Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Течение в сопле турбулентный режим

Определить коэффициент теплоотдачи в выходном сечении сопла ракетного двигателя, находящемся на расстоянии 0,75 м от головки камеры сгорания. Расход продуктов сгорания в двигателе 14 кг/с. Температура стенки сопла 800° С статическая температура потока 1497° С давление на срезе сопла 981 Па диаметр выходного сечения 0,25 м. Физические свойства газа взять из предыдущей задачи. Режим течения в пограничном слое считать турбулентным.  [c.256]


Акустическое поле создавалось динамическим громкоговорителем, установленным на торцевой стенке успокоительной камеры (рис. 2.16). Число Рейнольдса в опытах составляло Re = uad/i/ = (0,5-1,2) 10 . Последовательное удлинение сопла позволяло изменять режим течения в начальном пограничном слое от ламинарного до турбулентного естественным образом использования турбулизаторов. Некоторым недостатком такого способа турбулизации пограничного слоя является заметное изменение относительной толщины начального пограничного слоя <5о/го, где Го = d/2. Уровень звукового давления в выходном сечении сопла достигал L = 120-125 дБ.  [c.61]

Расход воздуха зависит от режима течения воздушного потока. В основном в дросселях элемента сопло—заслонка имеет место турбулентный режим течения воздуха. Расход в этом случае при пренебрежении изменением плотности определяется по формуле  [c.126]

Начало переходного режима (или момент запуска сопла), зависимость его от геометрических параметров сопла и газодинамических параметров потока необходимо знать для того, чтобы избежать резкого понижения давления в эжекторном контуре и высокого уровня потерь тяги в эжекторных соплах вследствие этого понижения давления. Это достигается путем перехода к отрывному или автомодельному течению за счет выбора геометрических параметров сопла на основных режимах полета самолетов. При этом решается также задача смещения режима запуска на неосновные режимы полета самолетов, где высокий уровень потерь слабо сказывается на экономичности двигателя или самолета. Сложность течения в турбулентном пограничном слое струи при достаточно быстром, практически нестационарном, изменении размеров струи в момент запуска сопла обусловили отсутствие надежных расчетных методов определения момента наступления этого режима и необходимость проведения экспериментальных исследований. Достаточно подробно переходный режим течения, включая режим запуска в эжекторных соплах, исследован в работах [16], [18], [33], [74], [75] и др.  [c.138]

Управляемые дроссели типа сопло-заслонка представляют собой устройства, состоящие из сопла и плоской заслонки (рис. 14.5), которая перемещается вдоль оси сопла и изменяет площадь кольцевой щели между торцом сопла и заслонкой, что приводит к изменению гидравлического сопротивления дросселя. В управляемом дросселе типа сопло-заслонка запорный элемент (заслонка) имеет одну степень свободы — вдоль оси сопла. Эти дроссели могут работать на слабо очищенных жидкостях благодаря наличию зазора между соплом и заслонкой, а их характеристики имеют удовлетворительную стабильность в большом диапазоне температур, так как в регулируемом зазоре преобладает турбулентный режим течения жидкости.  [c.270]


Плазменный поток на срезе сопла плазмотрона имеет ламинарный, турбулентный или смешанный характер в зависимости от числа Рейнольдса. В работах [33, 78] определены границы областей существования ламинарных и турбулентных режимов течения на срезе сопла дугового плазмотрона в зависимости от числа Рейнольдса, определяемого через расход газа G, диаметр сопла и коэффициент вязкости, соответствующий средней температуре потока, вычисляемой из энергетического баланса плазмотрона. По данным [33], при Re < ИОн-250 плазменный поток на срезе сопла ламинарный, при Re > 300- 800 — турбулентный, а в промежуточной области чисел Re режим течения переходной. В работе [78] ламинарным поток считается при Re < 630, а турбулентным — при Re > 850. В промежуточной области, как и ранее, течение является переходным. Помимо этого, на ламинарность и турбулентность течения существенно влияет режим горения электрической дуги или иного разряда. Так, в дуговых плазмотронах при малой длине дуги (/д =< 0,5 см) в дуговом канале  [c.147]

Методы расчета плазменных струй, суш,ествуюш,ие в настоящее время [19, 23, 28, 47, 74, 73], удовлетворительно объясняют одни экспериментальные данные и сильно расходятся с другими. Это объясняется тем, что на распространение плазменной струи большое влияние оказывают начальные условия ее истечения, к которым прежде всего относятся [83] режим течения на срезе сопла, начальная неравномерность параметров и исходная турбулентность. Эти факторы при расчетах обычно не учитываются.  [c.157]

В некоторых технических задачах (например, при проектировании устройств струйной гидропневмоавтоматики) приходится встречаться с турбулентными затопленными струями, образующимися при истечениях жидкости из отверстий и сопл в среду тех же физических свойств, что и струя. Режим течения в таких струях может быть ламинарным, однако наибольшее практическое значение имеют турбулентные струи, основы теории которых рассмотрены в настоящем параграфе.  [c.415]

Аэродинамические и акустические параметры, характеризующие начальные условия истечения дозвуковых затопленных и спут-ных турбулентных струй. В общем случае начальные условия истечения характеризуются распределением в выходном сечении сопла средней скорости, температуры, энергии и масштаба турбулентности. Применительно к затопленным струям с почти равномерным распределением перечисленных параметров по сечению (вне пограничного слоя на срезе сопла) для характеристики начальных условий истечения используются следующие параметры Re = uadju - число Рейнольдса, Мо = щ/а - число Маха, То/Тоо - степень неизотермичности, = и /uq - степень турбулентности в центре выходного сечения сопла, <5q и бо и Я = 6 /во - толщина вытеснения, толщина потери импульса и формпараметр пограничного слоя в выходном сечении сопла. К начальным условиям истечения относится также режим течения в пограничном слое в выходном сечении сопла (ламинарный, переходный, турбулентный). В ряде случаев представляется также существенным знание масштаба турбулентности, а также наличия вибраций сопла - продольных и поперечных, их величина и спектры. Характеризуются они величиной вибрационного ускорения, которая измеряется специальными вибродатчиками.  [c.35]

Пассивное управление осуществляется за счет изменения начальных условий истечения (режим течения в пограничном слое на срезе сопла, изменение параметров этого слоя, начальная турбулентность потока, начальный масштаб турбулентности) или же изменения геометрии устройства, формирующего струю (форма сопла или диафрагмы с острыми кромками, сопла сложной геометрии прямоугольные, треугольные, эллиптические, кольцевые, многотрубчатые, лепестковые, сопла круглого сечения с генераторами продольных вихрей в их выходном сечении). Пассивное управление позволяет не только изменять топологию крупномасштабных когерентных структур, но при их ослаблении усиливать относительную роль мелкомасштабной турбулентности. Как правило, при пассивном управлении достигается интенсификация смешения, хотя при некоторых слабых воздействиях, приводящих к ослаблению когерентных структур в струе удается получить и противоположный эффект - ослабление перемешивания.  [c.40]


В первых опыгах по акустическому возбуждению турбулентных струй режим течения в начальном пограничном слое в выходном сечении сопла не контролировался. В дальнейшем, однако, выяснилось, что эффект интенсификации и ослабления перемешивания в струе при акустическом облучении заметно различаются при изменении режима течения в пограничном слое при выходе из сопла.  [c.60]

Формулы (10.50) и (10.53) могут быть выведены из соображений размерности без использования гипотезы (10.40), если принять общую гипотезу подобия для лагранжевых характеристик, утверждающую, что физические параметры, от которых зависят эйлеровы статистические характеристики соответствующих турбулентных течений, полностью определяют и их лагранжевы характеристики (т. е. полностью задают весь турбулентный режим). В самом деле, согласно п. 6.8, для трехмерной струи динамического происхождения определяющими физическими параметрами являются плотность жидкости р и суммарный импульс вытекающей за единицу времени жидкости 2ярЛ4 для двумерной динамической струи — плотность р и импульс рМх, приходящийся на единицу времени и единицу длины сопла, из которого вытекает струя для зоны перемешивания плоскопараллельных течений — плотность р и скорость Уо= Кг— VI для трехмерной конвективной струи — р, р, поток тепла вдоль струи Q и параметр плавучести g/To, для двумерной конвективной струи — р, Ср, /7 о и поток тепла Ql, приходящийся на единицу длины нагретого цилиндра. Если, например.  [c.504]


Смотреть страницы где упоминается термин Течение в сопле турбулентный режим : [c.90]    [c.378]    [c.172]    [c.502]   
Гидродинамика многофазных систем (1971) -- [ c.154 ]



ПОИСК



Режим турбулентный

Режимы течения

Сопло

Течение турбулентное

Турбулентный режим течения



© 2025 Mash-xxl.info Реклама на сайте