Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Защита стали от коррозионной усталости

После изложения основных положений о прочности стали в коррозионных средах можно наметить основные принципы защиты стали от коррозионной усталости и рекомендовать методы повышения прочности стали в коррозионных средах при длительном действии статических или циклических напряжений.  [c.177]

ЗАЩИТА СТАЛИ ОТ КОРРОЗИОННОЙ УСТАЛОСТИ ЭЛЕКТРОХИМИЧЕСКИМИ СПОСОБАМИ  [c.80]


Действительным методом защиты сталей от коррозионно-механического разрушения служит диффузионное цинкование. Цинкование не влияет на механические свойства сталей, но тормозит зарождение поверхностных трещин. Нанесение на поверхность стальных образцов цинкового диффузного покрытия ведет к значительному повышению сопротивления коррозионному растрескиванию и усталости. Диффузное цинкование применяется для увеличения срока службы насосных штанг, эксплуатируемых в нефтяных скважинах (срок их службы увеличивается с 2—3 месяцев до одного года, что обеспечивает весомый экономический эффект), Особенно эффективно сочетание диффузного цинкования поверхности и объемной закалки токами высокой частоты [21,71].  [c.122]

Хорошие результаты при защите стали от коррозионной усталости можно ожидать при одновременном применении электрохимической защиты и поверхностного упрочнения за счет наклепа, термической или термохимической обработки поверхности. При этом соче-  [c.179]

В нейтральных коррозионных средах катодная защита внепшим током может полностью защитить конструкционную сталь от коррозионной усталости. Такая степень защиты наступает лишь в том случае, если катодная поляризация полностью предотвращает коррозионный процесс на металле, подвергнутом переменным напряжениям.  [c.98]

Катодные покрытия — хром, никель, медь,— практически не защищают железо и сталь от коррозионной усталости. Наоборот, анодные покрытия — цинк, кадмий,— так же как и катодная поляризация, могут почти полностью защитить образец от добавочного действия коррозионной среды. Некоторым подтверждением сказанному могут служить приводимые на рис. 134 кривые, показывающие характер влияния на коррозионную усталость различных средств защиты [11].  [c.263]

Приведены сведения о коррозии и коррозионно-усталостном разрушении металлов. Дан анализ современных методов и средств изучения коррозионной усталости. Рассмотрено влияние на коррозионную выносливость металлов структуры сплавов, агрессивности среды, масштабного фактора, частоты приложения механической. нагрузки и др. Приведены закономерности коррозионно-усталостного разрушения сталей, подвергнутых упрочняющим поверхностным обработкам. Изложены вопросы электрической защиты металлов от коррозионно-усталостного разрушения.  [c.62]


В ряде отраслей промышленности нефтегазодобывающей, нефтехимической, химической наряду с защитой стали и сплавов от коррозии актуальной является проблема защиты от коррозионной усталости, растрескивания, водородного охрупчивания. В этом случае необходим комплексный подход к выбору ингибиторов с применением соответствующих критериев. Применительно к конкретным условиям эксплуатации в качестве таких критериев используют наряду с приведенными выше следующие [1]  [c.9]

ЗАЩИТА ОТ КОРРОЗИОННОЙ УСТАЛОСТИ СТАЛИ АНОДНЫМИ ПОКРЫТИЯМИ  [c.133]

Целесообразность применения порошковых эпоксидных красок для защиты стальных деталей от коррозионной усталости подтверждена тем, что предел выносливости шлифованных образцов из стали ЗОХГСНА на воздухе и в присутствии водопроводной воды составил  [c.73]

К металлическим покрытиям, защищающим сталь от коррозии и наводороживания в различных агрессивных средах, а также в условиях статической водородной усталости, предъявляется комплекс требований, таких, как высокая коррозионная стойкость, низкая водопроницаемость, достаточная пластичность и прочность сцепления с основой, определенный уровень и знак внутренних напряжений, отсутствие наводороживания в процессе нанесения покрытий, технологичность процесса нанесения для защиты конкретного изделия, экономическая целесообразность нанесения покрытия.  [c.90]

В плане отражены проблемные вопросы совершенствования производства стали, цветных металлов и полупроводниковых материалов, порошковой металлургии, защиты металлов и сплавов от коррозии Применение пульсирующего дутья при производстве стали , Проблемы совмещения горячей деформации и термической обработки стали , Процессы жидкостной экстракции в цветной металлургии , Безокислительный нагрев редких металлов и сплавов в вакууме , Структурные дефекты в эпитаксиальных слоях полупроводников , Феноменология спекания , Коррозионная усталость металлов , Защита от коррозии силикатами .  [c.3]

На примере исследования выносливости образцов из стали 45 с протектором в виде электролитически осажденного цинкового пояска показано [20], что протекторная защита существенно повышает сопротивление коррозионной усталости стали в любом структурном состоянии. Степень защиты зависит от обработки детали (табл. 23). Наиболее высокий эффект  [c.196]

Предложенная адсорбционно-электрохимическая теория коррозионной усталости дает истолкование ряду явлений, которые не могут быть объяснены с точки зрения существующей электрохимической теории коррозионной усталости. Согласно предложенной теории становится ясной невозможность восстановления усталостной прочности стали в коррозионных средах до ее значения в воздухе за счет катодной защиты от внешнего источника тока. Катодная поляризация, как это было показано выше (см. фиг. 21), сначала снижает отрицательное влияние анодных процессов, но, прекратив их полностью, все же не восстанавливает усталостной прочности стали до ее значения в воздухе, что объясняется проявлением адсорбционной и водородной усталости. Дальнейшее усиление катодной поляризации увеличивает наводороживание стали, и ее выносливость начинает резко снижаться под влиянием водородной усталости.  [c.175]

Электрохимические методы защиты стали, например- при помощи цинковых протекторов, или покрытия стали цинком, а также катодная защита от внешнего источника тока дают хорошие результаты при отсутствии напряжений. При действии же статических или циклических напряжений катодная защита за счет внешнего источника тока Может применяться только после установления оптимального значения плотности тока, так как повышение плотности тока выше определенного предела (как это видно из диаграммы на фиг. 21, точка 5) может вызвать водородную усталость стали. Поляризация при плотности катодного тока, меньшей оптимальной, не подавив полностью работы коррозионных пар, также не дает желаемого эффекта защиты. Характерно, что значение оптимальной плотности тока при защите стали, находящейся под напряжением, должно быть в десятки и даже в сотни раз выше, чем при защите ненапряженного металла. Однако даже в случае правильного подбора плотности защитного тока, как это говорилось выше (см. VII—2), катодная защита так же, как и защита протекторами или анодными покрытиями, не может полностью восстановить усталостной прочности стали в коррозионных средах до ее значений в воздухе.  [c.179]


Изучение электрохимического механизма коррозионной усталости позволило обосновать эффективность поверхностного упрочнения и протекторной и катодной защиты от усиления усталостного процесса действием коррозионной среды. Для углеродистой стали с средним содержанием углерода протекторная защита при помощи цинковых покрытий позволила увеличить предел усталости на 100% и более [17].  [c.666]

Как показано выше, характер изменения электрохимических свойств сталей, циклически деформируемых в коррозионной среде, взаимосвязан с определенными этапами развития коррозионно-усталостных повреждений. Данные об изменении электрохимических свойств при усталости позволяют интерпретировать развитие разрушений в зависимости от амплитуды напряжении и количества циклов нагружения. Они позволяют также описать процесс разрушения с количественной стороны, так как на их основе можно установить, в какой области и после какого числа циклов происходит развитие сдвигообразований, микротрещин, магистральной трещины и как при этом повышается электрохимическая активность металлической поверхности, Данные об электрохимических свойствах металлов в условиях коррозионно-усталостного разрушения позволяют обоснованно выбрать для них параметры катодной защиты.  [c.177]

Для того чтобы коррозионный процесс оказывал влияние на усталостную прочность, скорость коррозии должна превышать некое минимальное значение. Эти величины удобно определять путем анодной поляризации опытных образцов в деаэрированном 3 % растворе Na l. При этом скорость коррозии рассчитывают по закону Фарадея из плотностей тока и определяют критические значения, ниже которых коррозия уже не влияет на усталостную прочность. (Эти измеренные плотности тока не зависят от общей площади поверхности анода.) Значения минимальных скоростей коррозии при 30 цикл/с для некоторых металлов и сплавов приведены в табл. 7.5. Можно ожидать, что эти значения будут увеличиваться с возрастанием частоты циклов. Для сталей критические скорости коррозии не зависят от содержания углерода, от приложенного напряжения, если оно ниже предела усталости, и от термообработки. Среднее значение 0,58 г/(м сут) оказалось ниже общей скорости коррозии стали в аэрированной воде и 3 % Na l, т. е. 1—10 г/(м -сут). Но при pH = 12 скорость общей коррозии падает ниже критического значения и предел усталости вновь достигает значения, наблюдаемого на воздухе [721. Существование критической скорости коррозии в 3 % Na l объясняет тот факт, что для катодной защиты стали от коррозионной усталости требуется поляризация до —0,49 В, тогда как для защиты от коррозии она составляет —0,53 В.  [c.160]

Известно, что при катодной поляризации в морской воде на поверхности металла осаждается гидрооксидно-солевой осадок, чего не наблюдается при испытании в водных растворах Na I, в которых отсутствуют ионы кальция и магния. С увеличением электросопротивления такого осадка снижается защитная плотность тока, что можно эффективно использовать при выборе режимов электрохимической защиты сталей от коррозионной усталости.  [c.193]

Защита стали от коррозионной усталости является одной из главных проблем коррозионной науки. Создание в поверхностном слое стали напряжений сжатия также хорошо предотвращает коррозионную усталость, как и обычную усталость. Напря-л<ения на поверхности изделий можно создавать химическими способами, такими как азотирование или цементация, или закалкой с температуры ниже температуры начала превращения [27]. Еще один метод состоит в обработке поверхности роликами  [c.294]

Наиболее эффективным из этих направлений является предварительное упрочнение поверхностной электрозакалкой, обкаткой роликами или наклепом дробью. Из анодных гальванических покрытий лучшую защиту от коррозионной усталости стальных деталей обеспечивают цинковые покрытия. В речной и морской воде цинковые покрытия практически полностью защищают сталь от коррозионной усталости. Цинковое покрытие, нанесенное другими способами и, в частности, полученное методом распыления (металлизатции), также дает высокую защиту от коррозионной усталости.  [c.172]

Способы защиты от коррозионной усталости деталей и аппаратов в значительной степени аналогичны рассмотренным выше методам защиты от коррозионного растрескивания. Подробно разработаны методы заигиты от коррозионной усталости конструкционных марок углеродистой стали.  [c.117]

Хотя теоретические основы электрохимической защиты разработаны довольно хорошо и она успешно выдержала проверку временем, в последние годы в связи с применением высокопрочных сталей, обладающих повышенной чувствительностью к водородному охрупчиванию, возникла необходимость пересмотра некоторых параметров катодной защиты с целью исключения наводороживания металлов. Представляет также интерес использование анодной защиты от коррозионной усталости пассивирующихся металлов.  [c.4]

Л.А.Гликман и др. [235] изучали влияние катодной поляризации на коррозионную усталость образцов диаметром 10 мм из нормализованной стали 25 в естественной морской воде при чистом изгибе с частотой 50 Гц. Они показали, что при оптимальном потенциале поляризации -1150 мВ условный предел коррозионной выносливости стали при N = 2 10 цикл увеличивается с 70 до 190 МПа и приближается к значению предела выносливости в воздухе (200 МПа). Плотность тока, необходимая для защиты стали от разрушения в морской воде, на 1—4 порядка ниже, чем в 3 %-ном растворе Na I, и составляет 0,01—0,2 А/м . Низкая защитная плотность тока в естественной морской воде связана с образованием плотного осадка.  [c.194]


В работе [132, с. 105 было исследовано влияние ингибиторов АГМИБ И-1-Л, КПИ-2 и ФМИ на малоцикловую усталость стали 20 в 3,5М H2SO4. Было показано, что ингибитор ФМИ обеспечивает полную защиту от коррозионной усталости, а наименьшую защиту дает ингибитор АГМИБ КПИ-2, И-1-А занимают по своей эффективности промежуточное положение. Интересно отметить, что ингибитор АГМИБ эффективно замедляет в этой среде коррозионное растрескивание (см. табл. 26). Это еще раз показывает, что различие в механизмах коррозионного растрескивания и усталости, требует особого подхода к подбору ингибиторов.  [c.78]

Процесс коррозионной усталости в электролитах является механо-электрохимическим. Поэтому можно использовать электрохимическую защиту. Так, при наложении катодной поляризации при испытании низкоуглеродистой стали на коррозионную усталость в 3 /о-ной Na i наблюдалась полная защита стали от общей коррозии и повышение предела усталости до значений, близких к пределу усталости на воздухе [7, с. 263]. Использование цинкового протектора или анодных металлических покрытий (Zn, d) позволяет также значительно повысить предел коррозионной усталости канатной проволоки в морской воде. Катодные металлические покрытия (Sn, РЬ, Си и др.) достаточно эффективны только в случае их сплошности.  [c.118]

Количество бихромата калин, необходимого для защиты от коррозионной усталости, как гижазывают получеин1.1е данные, значи-T jUiHo превышает погребное количество его для за циты стали от коррозии в ненапряженном состоянии.  [c.25]

Последние французские исследования методов защиты от коррозионной усталости низколегированной стали дают основания считать, что как азотирование, так и оцинкование с последующей обработкой в кислой хроматной ванне, дают хороший эффект. Наилучший результат был получен при обработке, оставляющей в металле двуосевое сжатие, с последующими оцинко-ванием и обработкой в кислой хроматной ванне [48].  [c.668]

При аналогичных условиях проведения опытов изучали [101] возможность ингибиторной защиты стали 1Х18П9Т от малоцикловой коррозионной усталости. В качестве ингибитора использован подпетый бензилхинолиний (2 г/л), так как это вещество достаточно эффективно тормозит общую коррозию сталей в кислотах и в растворах хлористого магния, а его защитные свойства сохраняются при повышенных температурах и не утрачиваются в течение длительного времени. Опыты показали, что долговечность стали в неингибированных растворах Mg I2 при высоком уровне деформации (8=8-10 ) уменьшаются по сравнению с долговечностью на воздухе примерно в  [c.98]

Возможно, что циклическая водородная усталость также сопровождается адсорбционно-усталостными явлениями, особенно в средах, содержащих полярные органические кислоты, однако этот вопрос еще сов.ершенно не исследован экспериментально. Р. И. Крипякевич, Ю. И. Бабей и Г. В. Карпенко [425] провели специальные эксперименты, направленные на выяснение роли катодной и анодной поляризации стального образца в-соотношении между его коррозионной и водородной усталостью. Исследование условий перехода от разрушения образца по механизму коррозионной усталости к проявлению водородной усталости представляет как теоретический интерес (изучение процесса усталостного разрушения металла), так и большое практическое значение (определение оптимальных условий катодной защиты стали).  [c.158]

Способы защиты от понижения усталостной прочности деталей и аппаратов, работающих в коррозрюнных условиях, также весьма разнообразны и в значительной степени аналогичны рассмотренным выше методам защиты от коррозионного растрескивания. В особенности подробно изучены методы защиты от понижения коррозионной усталости конструкционных марок углеродистой стали.  [c.108]


Смотреть страницы где упоминается термин Защита стали от коррозионной усталости : [c.177]    [c.137]    [c.78]    [c.81]    [c.6]    [c.90]    [c.135]    [c.136]    [c.618]    [c.229]    [c.171]    [c.97]    [c.126]    [c.25]    [c.387]    [c.176]    [c.117]   
Смотреть главы в:

Прочность стали в коррозионной среде  -> Защита стали от коррозионной усталости



ПОИСК



Защита от коррозионной усталости стали анодными покрытиями

Защита стали от коррозионной усталости электрохимическими способами

Коррозионная усталость

Усталость



© 2025 Mash-xxl.info Реклама на сайте