Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Критерии оценки конструктивной прочности

Критерии оценки конструктивной прочности материала, которые находятся в наибольшей корреляции со служебными свойствами данного изделия, характеризуют работоспособность материала в условиях эксплуатации.  [c.61]

Сделана попытка дать некоторые исходные соображения о выборе стали и метода упрочнения типовых деталей машин, конструкции н инструмента. Описаны основные виды повреждения деталей машин (хрупкое и вязкое разрушение, деформация, изнашивание и др-). Рассмотрены принципы выбора комплекса прочностных свойств, которые определяют работоспособность металла (стали) при эксплуатации деталей машин. Дана классификация критериев оценки конструктивной прочности стали,  [c.3]


Для весьма ограниченного количества изделий, работающих в условиях статической нагрузки, критериями оценки конструктивной прочности могут быть параметры, определяемые при одноосном статическом нагружении. Для большинства изделий н конструкций необходимо использовать другие критерии оценки конструктивной прочности, которые можно разделить на две группы  [c.31]

Критерии оценки конструктивной прочности  [c.31]

При анализе структуры уравнений критериев прочности подчеркивается, что в исследуемые зависимости необходимо вводить специальные параметры, отражающие индивидуальные особенности материала. Особую роль такие коэффициенты приобретают при больших сроках службы, когда в процессе длительного воздействия температуры и внешних нагрузок могут изменяться как свойства материала, так и механизм развития процессов деформирования и зарождения и роста повреждений. Поэтому, планируя программу испытаний для оценки конструктивной жаропрочности, следует выявлять границы температурно-силовой области эксперимента, в которой сопротивление разрушению определяется физическими закономерностями, адекватными процессам, определяющим условия службы металла при длительной эксплуатации. В таких условиях обработка экспериментальных данных позволит получить правильные оценки коэффициентов как уравнении температурно-временной зависимости прочности, так и формул критериев длительной прочности.  [c.145]

Важнейшим критерием оценки качества соединения являются его прочностные характеристики. Вопросы прочности, технологии и свойств материалов при изготовлении комбинированных соединений тесно связаны между собой. Поэтому в книге большое внимание уделено рассмотрению прочности соединений при различных видах нагружений. Приведенные характеристики дадут возможность выбрать оптимальную технологию и конструктивные параметры комбинированных соединений, а также сравнить работоспособность различных видов соединений.  [c.4]

Таким образом, методы прогнозирования ресурса должны базироваться на таких критериях, которые бы учитывали временные процессы накопления повреждений в металле. В качестве параметров надежности должны быть показатели долговечности, например, время до разрушения или число циклов нагружения до разрушения. Существующие нормативные материалы по расчету прочности не позволяют получать такие важные характеристики прочностной надежности. Например, в процессе эксплуатации аппаратов вследствие деформационного старения происходит некоторое повышение прочностных свойств, т.е. временного сопротивления и предела текучести металла. Для конструктивных элементов оборудования из низкоуглеродистых и низколегированных сталей, работающих при нормальных условиях эксплуатации, значение предела текучести может возрастать до 20%. Заметим, что временное сопротивление Gb является расчетной характеристикой при выполнении прочностных расчетов по действующим НТД. Из этого следует парадоксальный вывод о том, что с увеличением срока службы аппарата можно увеличивать рабочее давление, если производить оценку прочности по действующим отраслевым нормам и правилам. Другими словами, с увеличением срока службы аппарата его надежность должна увеличиваться. В действительности, наряду с увеличением прочностных свойств происходит повышение отношения предела текучести к пределу прочности К в, снижение пластичности и вязкости, которые определяют ресурс длительной прочно-  [c.366]


Заканчивая рассмотрение закономерностей сопротивления материалов циклическому упругопластическому деформированию, отметим, что аналитическое выражение диаграмм в форме обобщенной диаграммы деформирования позволяет отразить все основные особенности поведения материалов при повторном нагружении за пределами упругости. Накопленные данные по параметрам обобщенной диаграммы дают возможность для достаточно широкого круга конструкционных материалов рассчитывать кинетику циклических напряжений и деформаций в связи с разработкой критериев и оценкой прочности при малом числе циклов нагружения конструктивных элементов.  [c.77]

Анализ НДС элементов конструкции при малоцикловом термомеханическом нагружении (см. гл. 4) дает необходимую информацию о циклических упругопластических деформациях в наиболее нагруженных зонах конструкций, а также зависимости этих деформаций от числа циклов, скорости нагружения и длительности выдержки при постоянной нагрузке. Эту информацию принимают в качестве исходных данных при оценке прочности конструктивных элементов с помощью деформационно-ки-нетического критерия прочности (см. гл. 2).  [c.246]

Оценка результатов ускоренных испытаний. Для сравнения конструктивных вариантов деталей, узлов и машин необходимо выбрать критерии появления отказа. При решении этого вопроса возникает ряд трудностей. Так, например, можно ли, оценивая долговечность детали или сборочной единицы при испытании циклической прочности, ограничить срок службы началом появления трещин, или во всех случаях конструкцию необходимо доводить до полного разрушения. Наиболее часто сроки появления первых трудноустранимых разрушений принимают за критерий для оценки долговечности.  [c.80]

Наряду с упрощенными расчетами широкое распространение получили расчеты на прочность, основанные на более точном учете истинного характера нагружения и действительной несу-ш,ей способности деталей машин. При оценке несущей способности учитывают возможные виды отказов по критерию прочности (см. рис. 9), влияние не только номинальных, но и местных напряжений, технологических способов упрочнения, шероховатости поверхности, масштабного и других конструктивно-технологических и эксплуатационных факторов.  [c.61]

Показатель вязкости разрушения Ki иопользуется как количественный критерий сопротивлению материала распространению в нем трещины и как критерий конструктивной прочности. В первом сл чае величина Ki служит оценкой склонности к хрупкому разрушению разных материалов в разных условиях. Вязкость разрушения зависит от температуры испытания и скорости деформации. Поэтому температурные завясимости Ки можно использовать для выявления областей хрупковязкого перехода. Применение Ki как критерия конструктивной прочности позволяет решать целый ряд задач, например рассчитывать максимально допустимую нагрузку на конструкцию с трещиной известных размеров, при которой еще не начинается ее быстрого развития, заканчивающегося полным разрушением определять критические размеры трещины при заданном уровне напряжений и т. д.  [c.202]

Прочностные характерстики — это важнейшие критерии оценки качества соединения, так как от них зависит надежность и срок работы конструкции. Значительное влияние на эти характеристики оказывают технологические и конструктивные параметры соединений. Прочность комбинированного (клее-сварного и клее-заклепочного) соединения зависит от технологии его изготовления и свойств применяемых материалов (основного металла и клея) в значительно большей степени, чем прочность юбычного сварного или клепаного соединения. Вопросы прочности, технологии и свойств материала при изготовлении комбинированных соединений особенно тесно связаны между собой. Поэтому прочность, жесткость и выносливость комбинированных соединений следует рассматривать как результат совместной работы в шве соединяемых листов (деталей), силовых точек (сварных точек, заклепок, болтов) и клеевой прослойки.  [c.126]


Работоспособность оборудования (трубопроводы, сосуды, аппараты и др.) зависит от качества проектирования, изготовления и эксплуатации. Качество проектирования, в основном, зависит от метода расчета на прочность и долговечность, определяется совершенством оценки напряженного состояния металла, степенью обоснованности критериев наступления предельного состояния, запасов прочности и др. В области оценки напряженного состояния конструктивных элементов аппарата к настоящему времени достигнуты несомненные успехи. Достижения в области вычислительной техники позволяют решать практически любые задачи определения напряженного состояния элементов оборудования. Достаточно обоснованы критерии и коэффициенты запасов прочности. Тем не менее, существующие методы расчета на прочность и остаточного ресурса тр>ебуют существенного дополнения. Они должны базироваться на временных факторах (коррозия, цикличность нагружения, ползучесть и др.) повреждаемости и фактических данных о состоянии металла (физико-механические свойства, дефектность и др.).  [c.356]

На первом этапе производится расчет на прочность по существующим нормативным материалам (ГОСТы, СНИ-Пы, РД и др.) с использованием фактических механических свойств, найденных в результате испытаний образцов, вырезанных из элементов оборудования, или косвенными методами (например, по изменению твердости или химическому составу и др.). Далее производится оценка остаточного ресурса по фактическим или априорным (если недостаточно диагностической информации) данным о дефектности, например, по разрешающей способности методов и средств неразрушающего контроля с учетом предыстории нагружения, а также характеристикам допускаемых технологических и конструктивных концентраторов напряжений. При такой оценке ресурса необходимо более полно учитывать реальные условия эксплуатации и использовать наиболее жесткие критерии разрушения, дающие консерватив-  [c.362]

Усложнение геометрии исследуемых элементов конструкций по мере снижения их материалоемкости, нелинейное поведение материалов в зонах конструктивной неоднородности, в вершинах исходных технологических дефектов (трещин, пор, включений, подрезов и т. д.), особенно при длительных статических и циклических нагрузках в условиях повышенных температур, ведут наряду с применением традиционных в практике проектирования аналитических методов к существенному развитию и совершенствованию численных методов и самих критериев прочности и разрушения, ориентированных на использование ЭВМ [1]. При этом вместе с нормативными подходами д.ля оценки ма.лоцикловой прочности и долговечности по условным упругим напряжениям (равным произведению местных упругих или упругопластических деформаций на модуль упругости при соответствующей температуре [2]) разрабатываются уточненные методы расчетов, основанные на деформационных критериях разрушения поцикловой кинетики местных упругопластических деформаций и учитывающие температурно-временные эффекты, частоту нагружения, форму циклов [3—7].  [c.253]

Итак, проектирование дисков — весьма ответственный про цесс, в котором должны учитываться все особенности условий их работы и использоваться многочисленные критерии оценк1 работоспособности, надежности и качества конструкций дисков К ним относят запас прочности по местным напряжениям, по осредненным предельным напряжениям, критерии динамической прочности, критерий весовой оценки. Последний отражает со вершенство конструктивной формы дисков, распределение напря жений в них, рациональность использования материала, техно логичность конструкции и факторы экономии. 1  [c.286]


Смотреть страницы где упоминается термин Критерии оценки конструктивной прочности : [c.30]    [c.10]    [c.711]    [c.292]    [c.353]    [c.96]   
Смотреть главы в:

Справочник металлиста Том2 Изд3  -> Критерии оценки конструктивной прочности



ПОИСК



322 — Критерии оценки

Б Био критерий критерии оценки

Критерии прочности

Оценка конструктивной прочности по критериям трещиностойкости

Оценка прочности

Прочность конструктивная



© 2025 Mash-xxl.info Реклама на сайте