Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Определяющие уравнения линейной теории упругих оболочек

Для реализации метода граничных элементов необходима матрица фундаментальных решений исходной системы уравнений. В линейных задачах теории упругости и теории пластин фундаментальные решения имеют простой вид, и поэтому метод здесь получил широкое распространение. Для пологих оболочек матрица фундаментальных решений определяется сложными громоздкими выражениями, а для пологой сферической оболочки выражается через специальные функции. Поэтому исследований по решению задач теории пологих оболочек методом граничных элементов мало. В связи с этим актуальной темой исследования является разработка методов граничных интегральных уравнений для решения линейных и нелинейных задач теории пологих оболочек, основанных на применении фундаментальных решений, которые определяются простыми аналитическими выражениями.  [c.4]


При рассмотрении подобного рода задач на применение теории краевого эффекта вначале необходимо решить соответствующую статически определимую безмоментную задачу оболочек, определив линейные и угловые перемещения в месте их стыка. Затем в этом же стыке приложить неизвестные внутренние упругие усилия Но и Мо и найти от них линейные и угловые перемещения. После этого можно составить условия неразрывности линейных и угловых перемещений и из этих уравнений определить Ид И Мо.  [c.134]

Таким образом, в рамках принятых допущений деформация боковой поверхности (а, = onst) полностью определяется четырьмя параметрами, выражающимися через параметры деформации срединной поверхности (а значит, на основании определяющих уравнений упругости, и через усилия — моменты) и отвечающими по статико-геометрической аналогии статическим граничным величинам Кирхгофа. Названные параметры деформации боковой поверхности, введенные в линейную теорию оболочек вторым автором этой книги [202], могут быть использованы в качестве обобщенных смещений при формулировке граничных условий. Обоснование сказанного и примеры практического применения деформационных граничных величин содержатся во второй части книги. Здесь лишь отметим, что названные величины позволяют в значительной мере варьировать способы формулировки граничных условий. Например, если в многосвязной оболочке замкнутый край оболочки = onst подкреплен абсолютно жестким кольцом, но может перемещаться как твердое тело, то вместо неприемлемых в этом случае граничных условий абсолютно заделанного края (1.133) следует использовать условия абсолютно жесткого края  [c.60]

ТЕРМОУПРУГОСТЬ — область мате-матич. теории упругости, в к-рой изучается возникповепио, распределение и величина температурных напряжений в телах, подчиняющихся закону Гука. При выводе основных уравнений Т. обыч1Ю предполагается независимость упругих и тепловых характеристик от темп-ры. Если темп-ра тела постоянна или представляет собой линейную функцию координат, то препятствий тепловому расширению нет и температурные напряжения (в однородном материале) не возникают. В др. случаях теория Т. показывает, что возникают термоупругие напряжения, тем большие, чем выше модуль Юнга, коэффициент линейного расширения и температурный градиент. Последний обычно растет с увеличением толщины сечения, что приводит к росту термоупругих напряжений. В зонах тела, подвергающихся быстрому нагреву, обычно возникают сжимающие, а быстрому охлаждению — растягивающие термоупругие напряжения. В теории Т. изучены напряжения в стержнях, фермах, пластинках, толстостенных трубах, кольцах, изгибаемых пластинках, оболочках вращения и др. При местной пластич. деформации уравнения Т. необходимо дополнять уравнениями термопластичности. Поэтому величины напряжений, согласно Т., оказываются завышенными по сравнению с действительными. Однако и в этих случаях теория Т, остается очень важной, с ее помощью определяют напряжения до начала пластич. деформации.  [c.319]


Пологий сферический купол из железобетона под действием внешнего давления рассматривал Г. С. Григорян [43]. Арматура считается упругой, ползучесть бетона описывается линеййой наследственной теорией Маслова — Арутюняна. Уравнения для прогибов с учетом геометрической нелинейности исследуются на устойчивость, и определяется максимальное значение нагрузки, при которой оболочка устойчива на бесконечном интервале времени. Пологая сферическая оболочка из линейного вязкоупругого материала под действием внешнего давления с учетом геометрической нелинейности рассматривалась в работах [114, 200, 249, 278, 300]. На основе анализа роста прогибов определялось критическое время про-щелкйвания.  [c.253]


Смотреть страницы где упоминается термин Определяющие уравнения линейной теории упругих оболочек : [c.226]    [c.76]    [c.322]   
Смотреть главы в:

Линейная теория тонких оболочек  -> Определяющие уравнения линейной теории упругих оболочек



ПОИСК



1.125, 126 — Определяемые

Линейная теория

Линейная теория оболочек

Линейные уравнения

Оболочки Теория — См. Теория оболочек

Оболочки Уравнения—см. Теория оболочек

Оболочки уравнения

ТЕОРИЯ УПРУГОСТИ Линейная теория упругости

Теории Уравнения

Теория оболочек

Теория упругости

Теория упругости линейная

Упругие оболочки

Упругости линейная

Упругость Теория — см Теория упругости

Уравнение определяющее

Уравнения Уравнения упругости

Уравнения теории упругости

Уравнения упругого КА

Уравнения упругости



© 2025 Mash-xxl.info Реклама на сайте