Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вязкие свойства материалов. Ползучесть

ВЯЗКИЕ СВОЙСТВА МАТЕРИАЛОВ. ПОЛЗУЧЕСТЬ  [c.393]

Влияние различных факторов на механические свойства материалов. Экспериментами установлено, что при повышении скорости нагружения и скорости деформирования повышаются предел текучести и предел прочности. При повышении температуры особенно ощутимой является ползучесть (см. 3.9). При высоких температурах более явственными становятся вязкие (пластические) свойства, тогда как при пониженных температурах наблюдается охрупчивание. Существенно влияние на механические свойства металлов химического состава. Например, малые легирующие добавки (хром, никель, молибден и др.) изменяют механические свойства сталей, дают возможность создавать материалы с высокой проч-  [c.142]


При выборе конструкционных материалов для оболочек твэлов, корпуса, технологических каналов атомных реакторов основным критерием в большинстве случаев являются их механические свойства. И это понятно, поскольку при облучении материала нейтронами до интегральной дозы 2-10 см каждый атом решетки испытывает более 100 смещений. При этом существенно изменяются структура и физико-механические свойства материалов. Облучение вызывает повышение пределов текучести и прочности, снижение ресурса пластичности, увеличение критической температуры перехода из хрупкого в вязкое состояние, размерные изменения за счет радиационного роста, ползучести и распухания. Вследствие ядерных реакций в материалах образуется большое количество газообразных примесей (гелий, водород), наличие которых в объеме приводит к возникновению таких явлений, как водородная хрупкость, гелиевое охрупчивание, газовое распухание. Существенное влияние на механические свойства материалов оказывают негазовые продукты ядерных превращений, которые могут выделяться в количествах, больших предела растворимости, и тем самым изменять фазовое состояние материалов [1, 2].  [c.54]

При определении механических характеристик вязко-упругих материалов проводят опыт, суть которого показана на рис. 22.21. Образец, находящийся в условиях ползучести, в момент времени t мгновенно разгружают. Упругие деформации Бе исчезают, а составляющая полных деформаций, обусловленная ползучестью, начинает со временем убывать. Такой процесс называется релаксацией деформаций или последействием. При этом в зависимости от свойств материала и условий проведения опыта диаграмма, соответствующая участку релаксации деформаций, может стремиться к нулю (кривая 1), что соответствует  [c.520]

Другим путем построения физических зависимостей для вязко-упругих тел является использование не рассмотренных выше дифференциальных соотношений, а интегральных уравнений, связывающих напряжения, деформации и время. Эти уравнения позволяют учесть при расчетах конструкций из вязко-упругих материалов историю нагружения, изменение свойств материалов в процессе ползучести и многие другие эффекты и явления. Известны, например, теория наследственности, теория старения и другие теории, применяющиеся для расчетов сооружений из бетона и других строительных материалов.  [c.525]

Как указывалось выше, линейные наследственные уравнения широко используются для описания механических свойств вязко-упругих материалов. Рассмотрим в рамках этих уравнений возможный способ учета влияния температуры на свойства вязко-упругих материалов. Известно, что у вязкоупругих материалов упругие характеристики в меньшей степени меняются с изменением температуры, чем Характеристики ползучести. Поэтому в дальнейшем примем, что только реологические параметры Пц, р, Rq, г являются функциями температуры. Замечено, что с повышением температуры реологические процессы протекают более интенсивно. Если производить опыты на ползучесть при различных уровнях напряжений и различных температурах, то деформация в каждый момент времени будет зависеть от двух параметров (а и Т). В области линейности результаты удобнее представлять  [c.87]


Линейная вязкоупругость. Ползучесть многих неметаллических материалов описывается с помош ью уравнений линейной вязкоупругости. Один из путей построения соотношений этой теории состоит в комбинировании упругих и вязких свойств. Для наглядного изображения такого ряда комбинаций применяют реологические модели, представляющие собою определенные наборы пружин и вязких сопротивлений. Соотношение между напряжениями и деформациями для одномерного случая имеет вид  [c.130]

Одним из важнейших критериев пригодности материала для применения его в элементах конструкции является способность сохранять в рабочих условиях необходимый уровень механических свойств. Поэтому явлениям этого класса в табл. 2 уделено первое место. Механические свойства сильно подвержены воздействию облучения, так как механизмы движения дислокаций весьма чувствительны к дефектам кристаллической решетки, В облученном кристалле движущимся дислокациям необходимо преодолевать, кроме обычного рельефа Пайерлса и сил взаимодействия с исходными дислокациями и другими несовершенствами структуры, еще целый спектр барьеров радиационного происхождения изолированные точечные дефекты и их скопления, кластеры и дислокационные петли вакансионного и межузельного типов, пары, выделения, возникающие в результате ядерных превращений. Облучение, как правило, вызывает повышение пределов текучести и прочности, ускоряет ползучесть материалов, снижает ресурс пластичности, повышает критическую температуру перехода хрупко-вязкого разрушения.  [c.11]

Материалы и тела, для которых зависимость между напряжениями и деформациями включает время, называются упруго-вязкими. Для таких материалов характерны следующие реологические свойства 1) изменение деформаций при постоянных напряжениях (ползучесть) 2) изменение напряжений при постоянных деформациях (релаксация) и снижение прочности при длительном воздействии нагрузок. Все реальные тела обладают свойством ползучести, но проявление этих деформаций зависит от промежутка времени, в течение которого ведутся наблюдения за процессом деформирования, от величины приложенной нагрузки и температуры, от граничных условий. Так, течение жидкости можно наблюдать за очень короткие промежутки времени (секунды, минуты), льда — за несколько часов и суток, глин — за сутки и месяцы, скальных грунтов — за тысячелетия и т. д. Течение жидкости вызывают очень малые касательные напряжения, тогда как для течения скальных грунтов требуются значительные напряжения.  [c.57]

Теория пластичности. Хорошо известно, что твердые тела являются упругими лишь при малых нагрузках. При воздействии более или менее значительных сил тела испытывают неупругие, пластические деформации. Пластические свойства весьма разнообразны и зависят от рассматриваемых материалов и внешних условий (температура, длительность процесса и т. д.). Так, пластические деформации прочных металлов (сталь, различные прочные сплавы и т. п.) в условиях нормальной температуры практически не зависят от времени те же металлы, работающие в условиях высокой температуры (детали котлов, паровых и газовых турбин), испытывают пластическую деформацию, нарастающую со временем (ползучесть), т. е., грубо говоря, текут подобно вязкой жидкости.  [c.9]

При описании механических свойств материалов принято различать два основных вида деформации упругую и пластическую. Упругая деформация обратима, т. е. она исчезает либо одновременно со снятием напряжения, либо постепенно во время отдыха материала после paзгpyз и (это явление называют также возвратом или обратной ползучестью). Пластическая деформация необратима, т. е. она не исчезает после снятия напряжения. Если упругая или пластическая деформация связана с напряжением вне зависимости от временных характеристик процесса нагружения, то такую деформацию называют мгновенно-упругой или соответственно мгновенно-пластической. Простейшим примером закона мгновенноупругого деформирования является линейный закон Гука. В более сложном случае, когда соотношение, связывающее деформацию с напряжением, включает в качестве дополнительного параметра физическое время, эту деформацию называют вязкоупругой или, соответственно, вязкопластической. Обе мгновенные деформации часто называют склерономными (т. е. независимыми от времени), а обе вязкие деформации — реономными (зависимыми от времени).  [c.6]


Вязко-упругие свойства материалов проявляются также и в других опытах. На рис. 22.20 показан стержень, предварительно растянутый и закрепленный по торцам. В таком опыте деформация с течением времени остается постоянной (е = onst), а напряжения уменьшаются. Это явление называется релаксацией напряжений. Уменьшение напряжений в этом опыте можно объяснить следующим образом. Если в формуле (22.48) положить 8 = onst, то рост деформаций ползучести со временем должен привести к уменьшению напряжений а.  [c.520]

Постановка задач устойчивости в условиях ограниченной ползучести нашла применение в связи с определением длительной критической нагрузки для тонкостенных конструкций из композитных материалов. У таких материалов проявляются вязкие свойства связующего, которые необходимо учитывать в-расчетах устойчивости. Г. И. Брызгалин [18] при определении длительной критической нагрузки для пластинки из стеклопластика учитывал упруговязкий характер деформаций сдвига в плоскости пластинки. Более общая задача длительной устойчивости сжатой прямоугольной пластинки из орто-тропного материала (ползучесть учитывается во всех направлениях) с линейной ползучестью, описываемой операторами Ю. Н. Работнова, рассмотрена в [73].  [c.251]

В общем случае вязко-упругий материал может иметь свойства памяти напряжений (эффект Кольрауша). Существует наследственная теория ползучести (старения), разработанная акад. Ю. Н. Работновьш, например, для бетона и других материалов.  [c.110]

Природа упругих деформаций и деформаций ползучести различна. Упругие деформации обусловлены изменением межатомных и межмолекулярных расстояний. Деформации ползучести связаны, например, в полимерах, с движением длинноцепочных молекул или перемещениями надмолекулярных структур. Эти явления подобны движению вязкой жидкости, в связи с чем материалы, обладающие свойствами ползучести, часто называются вязко-упругими, а теория ползучести — теорией вязко-упру-гости.  [c.519]

Указанная задача была впервые рассмотрена А. Р. Ржаницыным (1946, 1949). Модель линейного вязко-упругого тела удовлетворительно описывает ползучесть многих видов полимеров и бетона поэтому она широко применяется для расчета конструкций из этих материалов. Укажем на работы Г. С. Григоряна (1964) и Е. Н. Синицына (1966). В. В. Болотин и Е. Н. Синицын (1967) решили задачу о поверхностном выпучивании полупространства из слоистого материала, один из компонентов которого обладает линейными вязко-упругими свойствами. Общая теория вязко-упругих слоистых оболочек с воспринимающими поперечный сдвиг заполнителями при конечных прогибах развита Э. И. Григолюком и П. П. Чулковым (1964).  [c.348]

Для нормальных вязких жидкостей кол-во жидкости Q, протекающей в ед. времени через капилляр, прямо пропорционально р (см. Пуазёйля закон). % ГатчекЭ., Вязкость жидкостей, пер. с англ., 2 изд.. М.—Л., 1935 Френкель Я. И., Кинетическая теория жидкостей, М.— Л., 1945 Ф у к С Г. И., Вязкость и пластичность нефтепродуктов. М., 1956 Голубев И. Ф., Вязкость газов и газовых смесей, М., 1959. ВЯЗКОУПРУГОСТЬ в механике, свойство в-в в ТВ. состоянии (полимеров, пластмасс, тв. топлив и др.) быть как упругими, так и вязкими. При В. напряжения и деформации зависят от истории протекания процесса деформирования и характеризуются рассеянием энергии на замкнутом цикле деформации (нагружения) и постепенным исчезновением деформации при полном снятии нагрузок при этом чётко выражены ползучесть материалов и релаксация напряжений. Напр., величина удлинения цилиндрич. образца при заданном значении растягивающей силы зависит от скорости, с к-рой достигнуто это значение силы. При полной нагрузке в образце обнаруживается мгновенная остаточная деформация, к-рая с течением времени самопроизвольно стремится к нулю. Цикл растяжение — разгрузка требует необратимой затраты работы. Однако при очень медленном процессе рассеяние энергии очень мало. Хар-ки В. существенно зависят от темп-ры. в. с. Ленский.  [c.100]


Смотреть страницы где упоминается термин Вязкие свойства материалов. Ползучесть : [c.589]    [c.97]    [c.274]    [c.170]    [c.45]   
Смотреть главы в:

Сопротивление материалов Учебное пособие  -> Вязкие свойства материалов. Ползучесть



ПОИСК



Материал вязкий

Свойства материалов



© 2025 Mash-xxl.info Реклама на сайте