Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Медь и сплавы скорости потока

Резка металлов осуществляется сжатой плазменной дугой, которая горит между анодом — разрезаемым металлом и катодом — плазменной горелкой. Стабилизация и сжатие токового канала дуги, повышающее ее температуру, осуществляются соплом горелки и обдуванием дуги потоком плазмообразующих газов (Аг, N2, Hj, NHJ и их смесей. Для интенсификации резки металлов используется химически активная плазма. Например, при резке струей плазмы, кислород, окисляя металл, дает дополнительный энергетический вклад в процесс резки. Плазменная дуга режет коррозионно-стойкие и хромоникелевые стали, медь, алюминий и другие металлы и сплавы, не поддающиеся кислородной резке. Высокая производительность плазменной резки позволяет применять ее в поточных непрерывных производственных процессах. Нанесение покрытий (напыление) производятся для защиты деталей, работающих при высоких температурах, в агрессивных средах или подвергающихся интенсивному механическому воздействию. Материал покрытия (тугоплавкие металлы, окислы, карбиды, силициды, бориды и др.) вводят в виде порошка (или проволоки) в плазменную струю, в которой он плавится, распыляется со скоростью - 100—200 м/с в виде мелких частиц (20— 100 мкм) на поверхность изделия. Плазменные покрытия отличаются пониженной теплопроводностью и хорошо противостоят термическим ударам.  [c.291]


Скорость потока. Как сама медь, так и некоторые из ее сплавов очень чувствительны к скорости движение воды. В то же время в стоячей воде медь испытывает меньшую коррозию, чем многие другие металлы. Обычно рекомендуется, чтобы максимальная скорость потока морской воды для меди не превышала 0,9 м/с. Максимально допустимые скорости потока для других сплавов, определенные на основании опыта эксплуатации трубчатых конденсаторов, использующих чистую морскую ВОДУ представлены ниже [32, 61]  [c.100]

Влияние легирующих добавок на коррозионное поведение стали в морской воде при скорости потока до 2 м/с и температуре от 20 до 50 С исследовано в Японии [138]. В наибольшей степени скорость коррозии снижали добавки хрома, молибдена, марганца, меди и алюминия. Разработана новая коррозионностойкая сталь, содержащая 2 % Сг и 0,2 % Мо. Скорость коррозии нового сплава в потоке аэрированной морской воды в два раза, а в потоке деаэрированной воды — в десять раз меньше, чем для малоуглеродистой стали.  [c.178]

Если при рабочем давлении скорость потока кислорода превышает допустимые пределы, применяют трубы из меди или латуни. Все надземные кислородопроводы давлением 6,4 МПа и выше изготовляются только из медных или латунных труб. Для изготовления труб для транспортировки жидкого кислорода применяют медь, алюминиевые сплавы и коррозионно-стойкую сталь, сохраняющие прочность и вязкость при криогенных температурах.  [c.214]

У сплавов, чувствительных к этому виду коррозии, структура поверхности деформируется вплоть до появления линий скольжения [60]. Разрушения можно наблюдать уже при скоростях потока около 2 м/сек, если нарушается целостность защитных пл нок. Аналогично ведут себя медь и медные сплавы, соприкасающиеся с влажным паром медноцинковые сплавы редко применяются при температурах пара выше 260° С.  [c.261]

Влияние скорости потока на коррозию металлов, особенно таких, как железо, медь и другие сплавы, обычно встречающихся в  [c.139]

По-видимому, скорость проникновения жидкой меди в спеченный твердый сплав под действием всасывающего давлений П, значительно больше скорости диффузионного потока кобальта в медь. В результате этого кобальт й-первой зоне был полностью замещен медью, а раствор кобальта и меди переместился во вторую зону.  [c.98]


Паромасляные диффузионные насосы требуют создания предварительного разрежения. Разрез типового диффузионного насоса показан на рис. 112. Корпус насоса охлаждают водой. Нагреватель расположен вне насоса и смонтирован в виде печи сопротивления. Масло испаряется в кипятильнике, поднимается из испарителя по цилиндрическому паропроводу и выбрасывается под давлением от 133,32 до 1333,2 н м (от 1 до 10 рт. ст.) в кольцевые сопла со сверхзвуковой скоростью. В, зазоре между соплами и стенками наружного цилиндра, охлаждаемого водой, струя пара получается в виде диска или усеченного конуса. Попадая на холодные стенки, пары конденсируются, жидкость стекает в испаритель. Относительно малочисленные и легкие молекулы газа при столкновении с тяжелыми молекулами пара, движущимися со сверхзвуковыми скоростями, приобретают столь же большие скорости в направлении потока пара. При ударе о стенку насоса, расположенную всегда под углом к струе, молекулы газа приобретают движение, направленное в сторону предварительного разрежения. В качестве рабочей жидкости применяют ртуть, минеральные и силиконовые масла. Ртуть дороже масла и ее нельзя применять, если детали насоса выполнены из меди или ее сплавов, а также из алюминия. Кроме того, ртуть ядовита.  [c.204]

Никель—медь. В конструкциях, работающих в быстром потоке морской воды, такие сплавы, как Монель 400 и Монель К500, демонстрируют прекрасную коррозионную стойкость. Приток кислорода достаточен для поддержания пассивности, а большая скорость движения воды препятствует биологическому обрастанию. Результаты нспытанпй в быстром потоке, представленные в табл. 29, показывают, что оба сплава Монель значительно более стойки к коррозии в таких условиях, чем стали и сплавы на основе меди.  [c.82]

Для наземных и подземных трубопроводов газообразного кислорода применяют стальные трубы, когда скорость его потока не превышает 8 м/с. Если при рабочем давлении скорость потока кислорода больше допустимой или во всех надземных кислоро-допроводах давление не ниже 6,4 МПа, то используют трубы из меди или латуни. Трубы, предназначенные для пропускания жидкого кислорода, создают из меди, алюминиевых сплавов и коррозионно-стойкой стали, сохраняющих прочность и вязкость при низких температурах. Межцеховые кислородопроводы можно выполнять подземными и наземными.  [c.302]

Медь и ее сплавы коррозионностойки в неподвижцой или медленно текущей морской воде, но с ростом скорости потока воды их стойкость значительно уменьшается. При большой скорости воды медь и ее сплавы могут подвергаться эрозии.  [c.105]

Вакансионный механизм диффузии в сплавах наглядно подтверждается следующим экспериментом (Киркендал). Стержни из меди и латуни (сплав меди и цинка) отполировывались с торцов, плотно соединялись и подвергались высокотемпературному отжигу. Через поверхность соприкосновения стержней навстречу друг другу устремлялись два диффузионных потока атомов меди в латунь и атомов цинка из латуни в медь. Скорость диффузии цннка из латуни в медь больше, чем меди в латунь. В результате в латуни появляется избыточное число вакансий, образующих поры, видимые как черные пятнышки на микрофотографии. Беспорядочно расположенные белые и темные области являются кристаллитами (зернами) соответствующих металлов. Границы между зернами представляют собой нарушенные области, содержащие большое количество пустот (вакансий и их скоплений). Поэтому скорость диффузии по гра-  [c.126]

Коррозия медных конденсаторных труб для Комиссии по атомной энергии была исследована Мурреем и Тестером [33]. Ими была обнаружена небольшая питтинговая коррозия при малых скоростях потока и значительная — при высоких температурах. Пик-карози [34] показал, что при некоторых условиях (например, при наличии солоноватой воды и микробиологических наростов) срок службы адмиралтейской латуни может быть низким, поэтому следует предпочесть использование медно-никелевого сплава, содержащего 70% меди и 30% никеля. Естественно, что в случае меди наличие в атмосфере НгЗ или МНз может приводить и к нежелательным эффектам.  [c.91]


Наблюдавшийся в результате трения процесс избирательной диффузии не является исключением. Исследование диффузии металлов и их сплавов показало, что в ряде случаев наблюдается различная скорость диффузии отдельных элементов, составляющих сплав. Так, например, известен эффект Смигельскаса и Киркендалла [58], доказывающий неравенство диффузионных потоков меди и цинка в латуни.  [c.141]

Коррозия под осадком и питтинговая коррозия. Если скорость водной среды невелика и на поверхности образуются отложения (это особенно вероятно при скоростях водного потока менее 1 м/с), то в результате эффектов дифференциальной аэрации медь и медные сплавы могут подвергаться питтии-говой коррозии. В морской воде такая коррозия может возникнуть под отмершими рачками и моллюсками, при этом разлагающаяся органика содействует разрушению. Питтинговая коррозия наиболее вероятна в загрязненных прибрежных водах, особенно при наличии сероводорода. В таких водных средах на металле формируются сульфидные окалины, не обладающие защитными свойствами и даже способные ускорять разрушение материала.  [c.100]

Свинец, олово, а также сплавы свинца с оловом весьма стойки против коррозии в морской воде при малых скоростях ее движения. Свинец, под действием быстрого потока морской воды, подвергается эрозии, но олово хорощо противостоит эрозии и придает это свойство также и сплавам его со свинцом. Поэтому, для предохранения меди от коррозии в быстром потоке морской воды, ее покрывают сплавом 607о РЬ + 40 /о 5п. Такие оловянные покрытия должны иметь достаточную толщину и наносить их следует путем натирания расплавленным припоем (полуда). Этот способ следует предпочесть методу горячего погружения, так как в последнем случае покрытия получаются слишком тонкими. Если отдельные участки меди окажутся обнаженными, они могут сильно корродировать, особенно при большой скорости движения морской воды. В соответствии с этим тонкие оловянные покрытия на меди вероятно скорее вредны, чем полезны.  [c.448]

В потоке воды со скоростью 6 м сек скорость коррозии этих сплавов увеличивается в восемь раз. Н. Ж- Вилкинс [111,179] считает, что наиболее целесообразно использовать эти сплавы в сочетании с ингибированием воды (Н3РО4 и SiOj) при низких значениях pH. П. Коттон [111,203] указывает, что тепловыделяющий элемент, покрытый сплавом алюминия, легированного 9% кремния и 1% никеля, в течение 9 месяцев в воде при температуре 270° С коррозии не подвергался. В паре при температуре 217—250° С по прошествии 19 месяцев образцы из алюминиевого сплава, легированного 1% никеля 0,5% железа, 0,1—0,3% кремния и 0,1% меди, также показали высокую коррозионную стойкость. Такую же стойкость в воде при высокой температуре показали алюминиевые сплавы с концентрацией  [c.202]

Добавка водорода в смесь тем эффективнее, чем больше толщина разрезаемых листов [15]. Более того, толстые листы металлов с высокой теплопроводностью (медь, алюминий и их сплавы) вообще невозможно резать в аргоновых смесях, не содержащих водород, так как необходимые плотности тепловых потоков порядка 10 кВт/см для их резки возможно получить только при использовании водородосодержащих сред. При силе тока до 400 А скорость резки не зависит от того, какой применен состав газа — аргон с водородом или азот с водородом. При силе тока более 700 А скорость резки в аргоноводородной среде при тех же мощностях выше  [c.49]

Молибденовые пленки можно нанести на раскаленный чистый никель (рис. 3-3-7,/ и II), никелированное железо (рис. 3-3-7,///) или на сплав меди с содержанием 5—10% никеля путем термического разложения паров хлористого молибдена (МоСЬ) Эти пары образуются при 200 С и примешиваются в отношении I часть МоСЬ 10 частям Нг в поток водорода, омывающий под пониженным давлением металлическую поверхность, которую необходимо покрыть молибденом. Покрываемая молибденом деталь при этом помещается в кварцевую трубку и нагревается токами высокой частоты. При 900° С и давлении смеси газов 5 мм рт. ст. скорость осаждения молибдена равна 0,5 мм1ч. Наилучшее оцепление никеля и молибдена достигается при температуре осаждения 950° С.  [c.66]


Смотреть страницы где упоминается термин Медь и сплавы скорости потока : [c.136]    [c.187]    [c.44]    [c.241]    [c.688]   
Морская коррозия (1983) -- [ c.100 ]



ПОИСК



Медиана

Медь и сплавы

Медь и сплавы меди

Медь скорость

Поток скорости



© 2025 Mash-xxl.info Реклама на сайте