Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Конструкционные стали коррозия в воде морской

Конструкционные стали коррозия в воде морской 441,  [c.508]

В морской воде почти все обычно используемые металлы и конструкционные стали проявляют склонность к коррозии. Кроме того, повышенная опасность коррозии возникает при составных конструкциях из различных металлов вследствие хорошей электропроводности морской воды. Для оценки контактной коррозии могут быть использованы ряд напряжений различных металлов в морской воде (табл. 2.4) и правило площадей но формуле (2.43). Кроме того, существенное влияние оказывают сопротивления поляризации [см., формулу (2.42)]. Общее представление об этих условиях дают диаграммы контактной коррозии [12, 13]. К образованию контактных коррозионных элементов могут привести и участки с различной структурой в о>дном и том же  [c.355]


Однако в морской воде невозможно сохранить в пассивном состоянии углеродистые, легированные конструкционные стали, а также некоторые коррозионностойкие стали из-за присутствия в морской воде значительного количества хлорид- и сульфат-ионов, которые разрушают защитные оксидные пленки и образуют комплексы с ионами железа, активизируя анодный процесс электрохимической коррозии.  [c.37]

В зоне прилива характерно смачивание поверхности металла хорошо аэрированной морской водой в момент прилива. Температура металла зависит от температуры воздуха и воды, но температура воды является определяющей. Поверхность металла покрывается водорослями, которые могут производить частичную защиту конструкционных сталей и вызывать локальную коррозию нержавеющих сталей, алюминиевых сплавов.  [c.29]

В следующей главе рассмотрено влияние микроорганизмов на разрушение металла в морской воде. Обсуждаются эксперименты в таких средах, где важным фактором является наличие на поверхности металла бактерий. Как продолжительная, так н кратковременная экспозиция конструкционной стали в морской воде пригодной для роста микроорганизмов, показывает, что эти организмы оказывают существенное влияние на коррозионные процессы. Необходимы дальнейшие исследования, направленные на изучение возможности замедления коррозии путем селективного ингибирования деятельности бактерий, усиливающих коррозию.  [c.10]

Зависимость коррозионных потерь от времени экспозиции для образцов, испытывавшихся на среднем уровне прилива, имеет интересные особенности, являющиеся серьезным аргументом в пользу изложенной выше теории биологического контроля скорости коррозии в морской воде. Эта кривая представлена на рис. 122. Видно, что в течение первого года экспозиции скорость коррозии стали была очень велика (примерно 250 мкм/год), почти вдвое выше, чем при экспозиции в условиям постоянного погружения. Образцы в зоне прилива также подвергались обрастанию (в основном усоногими раками), но оно происходило значительно медленнее, чем при постоянном погружении в том же месте, и только через год на металле образовался слой, обладающий высокими защитными свойствами. После этого (в интервале от 1 до 2 года испытаний) скорость коррозии упала до очень малого значения (менее 10 мкм/год). Медленное обрастание и больший доступ кислорода к поверхности металла в зоне прилива (по сравнению с погруженными образцами) задержали возникновение полностью анаэробных условий на металлической поверхности, что, очевидно, и проявилось в увеличении периода защиты металла вследствие обрастания. Если бы рост бактерий на этой стадии можно было затормозить, то скорость коррозии осталась бы на очень низком уровне, сделав возможной длительную эксплуатацию углеродистой конструкционной стали без защитных покрытий. Это было бы аналогично случаю атмосферной коррозии стареющих (низколегированных) сталей, при многолетней эксплуатации которых практически не требуется никакого ухода.  [c.444]


В 1969—1970 гг. в Научно-исследовательской лаборатории ВМС США начались исследования биологического разрушения материалов и было решено установить скорости коррозии конструкционной стали в различных местах и проверить справедливость теории биологического контроля коррозии в морских средах. Стенды, на которых было закреплено по 12—14 дисков из углеродистой стали, вырезанных из одного листа металла, были доставлены в 5 различных мест и погружены в морскую воду. Расстояние от дна составляло около 2 м, а глубина погружения— 3,5—5,5 м относительно среднего уровня прилива.  [c.446]

Из данных, представленных в табл. 162, видно, что наиболее типичные значения средних стационарных скоростей коррозии стали в морской воде при нормальных условиях в местах с умеренным климатом лежат в пределах 50—65, а в тропической морской воде —в пределах 65—75 мкм/год. Располагая этими значениями, можно вывести простые уравнения для оценки срока службы конструкционной стали в нормальных прибрежных морских водах.  [c.452]

Рис. 2.3. Скорость коррозий и области (1 — 5) коррозионных повреждений конструкционной стали в зависимости от парциального давления Н З и СОг в синтетической морской воде при 45 — 60 °С [2.8] Рис. 2.3. <a href="/info/39683">Скорость коррозий</a> и области (1 — 5) <a href="/info/129463">коррозионных повреждений</a> <a href="/info/51124">конструкционной стали</a> в зависимости от <a href="/info/737">парциального давления</a> Н З и СОг в синтетической морской воде при 45 — 60 °С [2.8]
Находясь в электрическом контакте с большинством других конструкционных материалов титан и его сплавы в спокойной морской воде являются катодами. Такой контакт может ускорить коррозию сопряженного металла на большую или меньшую величину в соответствии с соотношениями площадей и поляризационными характеристиками контактирующих материалов (рис. 4.17). Из-за более низкого перенапряжения катодной реакции на медном электроде по сравнению с титановым электродом, потери массы углеродистой стали, находящейся в контакте с медью в несколько раз больше, чем в случае контакте с титаном (рис. 4.18).  [c.199]

В зарубежной практике гребные винты для ответственных судов изготовляют чаще всего из специальных латуней и алюминиевых бронз. В настоящее время специальные латуни постепенно вытесняются алюминиевыми бронзами благодаря высоким прочности, сопротивляемости усталости, стойкости против коррозии и эрозии, отсутствию склонности к коррозионному растрескиванию, а также меньшей массе [27]. В последние годы для изготовления винтов обычного класса за рубежом начали применять недорогие коррозионно-стойкие, а также низколегированные конструкционные стали. По данным некоторых компаний, винты из легированных сталей отличаются несколько большей эксплуатационной стойкостью, чем винты из углеродистых сталей, так как легированные стали обычно имеют повышенное сопротивление гидроэрозии и большую коррозионную стойкость в морской воде.  [c.11]

По нашему мнению катодно-модифицированные высокочистые (по +N) хромистые стали могут в ближайшее время стать виоле доступным коррозионностойким (и к различным видам местной коррозии) конструкционным материалом для химической, нефтехимической промышленности и конструкций, работающих в контакте с морской водой и хлоридными растворами.  [c.215]

Весьма эффективными средствами повышения коррозионноусталостной прочности конструкционных сталей являются азотирование (в том числе и антикоррозионное), диффузионное хромирование и силицирование. Обработанная этими способами сталь имеет предел усталости в условиях коррозии со стороны пресной воды, близкий к пределу усталости в атмосферных условиях. В отношении азотирования и диффузионного хромирования имеются данные, что они позволяют достигнуть аналогичного эффекта в морской воде, а также в паровой среде.  [c.209]


Безусловные достоинства титановых сплавов — высокая стойкость к общей коррозии, локальным видам коррозионного разрущения в морской воде в сочетании с высокой механической прочностью, малой по сравнению со сталью плотностью, и др. делают титан и его сплавы весьма перспективным конструкционным материалом для ответственных морских сооружений. Титан не лишен некоторых недостатков, к которым относится его низкая стойкость к биологическим формам коррозии, а также его способность интенсифицировать коррозию других металлов, находящихся с ним в контакте.  [c.26]

Применение нержавеющих сталей в качестве коррозионно-стойких конструкционных материалов для агрессивных сред основано на высоких защитных свойствах поверхностной (окисной) пленки сплава в пассивном состоянии. Локализованный вид разрушения, имеющий место при коррозии нержавеющих сталей в морской воде, принято рассматривать как следствие частичного нарушения пассивности.  [c.27]

Коррозионная выносливость. Тонкая плотная невидимая пленка окислов на поверхности металла предохраняет его от коррозии. Напряжения, разрушающие эту пленку, способствуют коррозии. Опыт показывает, что сталь и цветные металлы в условиях коррозии имеют очень низкий предел выносливости именно потому, что у них непрерывно разрушается пленка окислов. Например, большинство углеродистых и легированных конструкционных сталей даже в такой малоагрессивной среде, как простая вода, разрушаются при напряжении всего 15 + 3 кг/мм-, если подвергаются действию переменных нагрузок. В условиях более агрессивной среды (морская вода, раствор сернистых газов и т, д,) предел коррозионной выносливости значительно ниже, чем в простой воде.  [c.149]

Высокохромистые двухфазные аустенитно-ферритные стали обладают высокой коррозионной стойкостью, коррозионно-усталостной про шостью. хорошими механическими характеристиками. Благодаря высокой стойкости к коррозии под действием кавитации из этих сталей целесообразно изготовлять детали насосов высокой подачи для перекачки морской воды. Двухфазные аустенигно-ферритные нержавеющие стали находят широкое применение в химической и нефтехимической промышленности в качестве коррозионно-стойких конструкционных материалов. Стойкость к коррозии в морской воде этих сталей сравнима со стойкостью аустенитных сталей, т.е. достаточно высока, а сравнивае-мость и обрабатываемость лучше.  [c.20]

Несмотря на все большее расширение применения алюминиевых сплавов для морских сооружений, все же остается актуальной проблема изыскания конструкционных материалов, физико-химические свойства которых отвечали бы требованиям, предъявляемым нефтегазопромысловым сооружениям при эксплуатации в открытом море. Наиболее перспективный материал для этой цели — титан. Исследования некоторых титановых сплавов в Черном море на различных глубинах (7, 27, 42, 80 м) показали высокую стойкость исследованных сплавов на всех глубинах, и их скорость коррозии не превышала 0,01 г/(м2. ч), в то время как нержавеющие стали типа 18-9 были подвержены питтингу глубиной 2,5 мм после экспозиции в течение 21 мес. С увеличением глубины погружения образцов коррозионная стойкость повьииалась, что объясняется понижением температуры и более низкой концентрацией кислорода. Титан обладает очень высокой стойкостью не только в обычных морских средах, но также в загрязненных водах, в морской воде, содержащей хлор, аммиак, сероводород, двуокись углерода, в горячей морской воде. Титан выдерживает очень высокие скорости потока морской воды После 30-суточных испытаний при скорости потока 36,Ь м, с были чены следующие результаты  [c.25]

Морская вода содержит большое количество солей, главным образом хлориды, и имеет довольно высокую электропроводность. Эгим обстоятельством объясняется электрохимический характер коррозионных процессов в морской воде и пленке морской воды, образующейся на металлических конструкциях в воздухе. При наличии значительной концентрации хлорид-ионов и растворенного кислорода больишнство технически важных металлов (магний, алюминий и их сплавы, цинк, кадмий, коррозионностойкие и конструкционные стали могут переходить в состояние пробоя и подвергаться питтинговой коррозии.  [c.42]

Вообще говоря, в морской воде в качестве окислителя могут выступать ионы или молекулы воды и растворенный кислород. Исследованию катодных процессов в хлоридсодержащих средах были посвящены работы Г. В. Акимова, Н. Д. Томашева, Г. Б. Кларк, И. Л. Розенфельда. Как показали исследования, коррозия магния и его сплавов протекает в основном за счет водородной деполяризации алюминий и его сплавы, коррозионностойкие и конструкционные стали, никель и никелевые сплавы, медь, медные сплавы подвергаются коррозии с кислородной деполяризацией. Растворимость кислорода в морской воде ограничена. При протекании коррозии с кислородной деполяризацией очень часто скорость катодного процесса определяется диффузией кислорода и поверхности металла. В таких условиях перемешивание среды или перемещение поверхности металла относительно среды является важным фактором, который может оказать существенное влияние на характер коррозии. При перемешивании скорость катодного процесса будет уве-личиваться и металл из пассивного состояния может переходить в пробойное состояние (см. рис. 18).  [c.43]

Скорости и типы коррозии всех сплавов приведены в табл. 81. Некоторые из сталей были покрыты неорганическими покрытиями, состояние которых после испытаний приведено в табл. 82. Данные о чувствительности сталей к коррозионному растрескиванию под напряжением приведены в табл. 84. Определялось также влияние коррозии на механические свойства ряда сплавов при различных периодах их экспозиции (табл. 85). Состав воды вблизи поверхности в открытом море достаточно однороден по всем океанам [20]. Поэтому скорости коррозии сталей, экспонированных в сходных условиях в чистой морской воде, должны быть сравнимы между собой. Результаты многих исследований по коррозии конструкционных сталей у поверхности морской воды в различных местах по всему миру показывают, что после корсугкого периода экспозиции скорости коррозии постоянны и находятся в пределах от 0,076 до 0,127 мм/год [21, 22]. Факторами, которые могут вывести скорости коррозии из этих пределов, являются загрязнение моря, примеси в морской воде, около берегов, различия скоростей морских течений и различия в температуре воды у поверхности.  [c.225]


Научно-исследовательской лабораторией ВМС США были проведены 16-летние коррозионные испытания ряда металлов в водных и атмосферных тропических средах Зоны Панамского канала и в некоторых других местах [61—64]. Наиболее широко было исследовано поведение конструкционной углеродистой стали AISI 1020. В ходе испытаний у острова Наос (Тихий океан, Зона Панамского канала) были получены зависимости коррозионных потерь от времени при продолжительной экспозиции стали в тропической морской воде. Были экспонированы 30 одинаковых пластин после 1, 2, 4, 8 и 16 лет для анализа брали по 6 образцов. Измеряли коррозионные потери массы, глубину питтинга и изменение временного сопротивления каждого образца, анализировали степень и тип обрастания, характер продуктов коррозии. Такие, же партии образцов испытывали на среднем уровне прилива у острова Наос и в пресной воде озера Гатун. Несколько образцов были помещены в солоноватую воду (<1 %) озера Мирафлорес (оба названных озера расположены в Зоне Панамского канала). Скорости коррозии и результаты исследования биологической активности в четырех различ-  [c.441]

Рис. 121. Коррозия углеродистой конструкционной стали при постоянном погружении в морскую (i). пресную (2) и солоноватую (3) воду. Глубина к(ц>розип рассчитана по потерям массы. Лс — стационарная скорость коррозии. Кривые построены по средним значениям для 8 (/) и (2) или 2 (3) образцов Рис. 121. Коррозия <a href="/info/58790">углеродистой конструкционной стали</a> при постоянном погружении в морскую (i). пресную (2) и солоноватую (3) воду. Глубина к(ц>розип рассчитана по <a href="/info/251112">потерям массы</a>. Лс — стационарная <a href="/info/39683">скорость коррозии</a>. Кривые построены по <a href="/info/51699">средним значениям</a> для 8 (/) и (2) или 2 (3) образцов
Хотя ЦИНК корродирует в морской воде обычно с меньшей средней скоростью, чем железо, он не применяется в качестве конструкционного металла в условиях погружения как из-за плохих физических свойств, так и из-за склонности к местной коррозии [46]. Основное применение цинка — протекторы для защиты погружаемых конструкций и защитные гальванические покрытия на стали. Трубопроводы из оцинкованной стали используются на кораблях в пожарных системах перекачки морско й воды. Высокая коррозионная стойкость таких труб связана, несомненно, с ограниченной концентрацией кислорода в заполняющей их стоячей воде.  [c.167]

Результаты длительных и краткосрочных коррозионных испытаний конструкционной углеродистой стали в естественных водных средах свидетельствуют о существенном влиянии морских организмов на скорости коррозии сплавов на основе железа в морской воде. В начальный период экспозиции, пока обрастание макроорганизмами не привело к образованию сплошного покрытия, наблюдались очень высокие скорости коррозии (до 400 мкм/год). Продолжительность этого начального периода, тип и интенсивность обрастания, а также коррозионные потери в течение первого года экспозиции в разных местах могут значительно отличаться. К концу первых 1—1,5 лег экспозиции большинство исследованных образцов было покрыто толстым слоем морских организмов, участвующих в обрастании. Хотя состав этих естественных покрытий сильно изменялся в зависимости от географического положения места испытаний, все они оказывали существенное защитное влияние на стальные пластины. Защитные свойства естественных покрытий, образующихся при обрастании, значительно уменьшаются, когда они становятся достаточно толстыми (биологически активными) и препятствуют проникновению кислорода к поверхности металла. В этих условиях процесс коррозии контролируется сульфатвосстанавливающими бактериями, активными в анаэробной среде на поверхности металла, сохраняющейся благодаря самозалечивающемуся покрытию, возникшему при обрастании. Скорость коррозии стали приобретает стационарное значение, причем для различных мест эти значения очень близки.  [c.453]

В качестве конструкционных материалов оборудования химических производств, работающего в контакте с морской водой, наиболее целесообразно и экономически оправданно использование нержавеющих сталей, не подверлшнных подповерхностной коррозии.  [c.15]

Все обычные конструкционные материалы на основе железа, такие как малоуглеродистые стали, низколегированные стали и сварочное железо, в естественных водных средах при полном погружении корродируют практически с одинаковыми скоростями. Сварочное железо обладает несколько большей стойкостью, чем малоуглеродистая сталь при испытаниях в морской воде в Госпорте (Шотландия) потери массы образцов из сварочного железа после погружения в течение 1 года оказались на 15% меньше, чем у образцов из обычной малоуглеродистой стали. Способ производства и состав малоуглеродистой стали не оказывают существенного влияния иа скорость коррозии [25] (табл. 1.2).  [c.12]

Ускоренная коррозия сталей с 13% Сг в морской воде может вызываться их контактом с латунью, медью или более стойкими нержавеющими сталями. Аустенитные стали сами не подвержены анодному разрушению в морской воде при контакте с любыми обычными конструкционными материалами. Напротив, гальванический контакт с аустенитными сталями оказывает некоторое, хотя и слабое влияние на латунь, бронзу и медь, а в случае кадмиевых, цинковых, алю-мянневых и магниевых сплавов необходима изоляция или другие защитные меры, чтобы избежать значительного разрушения цветных металлов. Малоуглеродистая сталь и стали, содержащие 13% Сг, также подвержены ускоренной коррозии при контакте с хромоникелевыми сортами.  [c.35]

Титан как конструкционный материал обладает уникальным комплексом ценных свойств. Будучи всего на 2/3 тяжелее алюминия (р = 4,7г/см ), он превосходит его по прочности примерно в 6 раз и в два с лишним раза более тугоплавок. Титан отличается исключительной химической стойкостью. Б воздушной средс, морской воде, многих агрессивных средах титановые сплавы более стойки, чем большинство применяемых сейчас материалов, включая нержавеющие стали и никелевые сплавы. Даже при активном воздействии некоторых химических сред титан показывает почти нулевую скорость коррозии. Титановые сплавы, содержащие такие легируюп не элементы, как алюминий, кремний, хром, железо, медь, марганец, молибден и ванадий, могут работать в диапазоне температур от сверхнизкие до 500...600°С (рис. 7.5). Чистый титан малопрочен и не является жаропрочным материалом. Для обработки титана могут быть применены обычные технологические процессы и стандартное оборудование. Технический титан типа ВТ1 (99,% Т1) был наиболее распространенным материалом в первые годы промышленного освоения этого металла. Он не утратил полностью своего назначения и до сих пор благодаря хорошей свариваемости и пластичности.  [c.216]


Смотреть страницы где упоминается термин Конструкционные стали коррозия в воде морской : [c.193]    [c.451]    [c.387]    [c.2]    [c.219]    [c.507]    [c.24]   
Морская коррозия (1983) -- [ c.441 , c.443 , c.444 ]



ПОИСК



Еж морской

Конструкционные стали

Коррозия в морской воде

Коррозия морская

Морская вода

Морские воды

Стали конструкционные стали



© 2025 Mash-xxl.info Реклама на сайте