Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные уравнения и соотношения в криволинейных координатах

ОСНОВНЫЕ УРАВНЕНИЯ И СООТНОШЕНИЯ В КРИВОЛИНЕЙНЫХ КООРДИНАТАХ  [c.116]

Так как давление и скорость внешнего потока U считаются известными функциями от переменного х, то интегральные соотношения (3.5), (3.6) и (3.7) будут содержать две неизвестные функции, из которых первая будет представлять собой распределение основной скорости и по толщине слоя, а вторая — изменение толщины слоя с изменением криволинейной координаты х. При использовании этих интегральных соотношений приходится первую из неизвестных функций в какой-то мере задавать заранее и отдельные коэффициенты её определять из граничных условий. При подстановке в интегральное соотношение (3.5) задаваемой функции распределения скоростей по толщине слоя получится для толщины слоя дифференциальное уравнение первого порядка.  [c.267]


Часто весьма целесообразно оперировать основными уравнениями теории упругости в криволинейных ортогональных системах координат. Правда, это требует применения тензорного исчисления в общей форме, от которого в этой книге сознательно отказываются. Однако необходимые для дальнейшего основные соотношения для наиболее часто встречающихся криволинейных координат — цилиндрических и сферических приведены без вывода К  [c.71]

При выводе основных уравнений теории деформаций могут быть применены прямолинейные прямоугольные координаты. Однако при решении задач часто более удобно пользоваться криволинейными ортогональными координатами, которые уже встречались ранее. Поэтому следует привести дифференциальные соотношения, связывающие компоненты деформации с компонентами смещения в этих криволинейных ортогональных координатах. Они даются здесь в обычной форме записи, так как в такой форме они будут использованы в дальнейшем.  [c.29]

Одним из основных методов решения линейных уравнений с частными производными является метод разделения переменных, согласно которому исходное уравнение разбивается на несколько обыкновенных, содержащих по одному независимому переменному. Разделение переменных возможно лишь в некоторых криволинейных системах координат. Рассмотрим произвольную криволинейную систему координат (gi, I2, ёз), связанную с прямоугольными координатами соотношениями [68]  [c.47]

Мы рассмотрели основные законы движения заряженных частиц в электрическом и магнитном полях. Сначала мы определили лагранжиан частиц (уравнение (2.15)). Закон сохранения энергии позволил представить скорость частицы в виде функции потенциала (уравнение (2.31)). Затем были получены релятивистские уравнения движения (2.50) — (2.52) в обобщенной ортогональной криволинейной системе координат. Были рассмотрены частные случаи уравнений движения в декартовой (уравнения (2.53) — (2.55) и цилиндрической (2.60)—(2.62) системах координат. Уравнения движения были затем преобразованы в траекторные уравнения (2.76) —(2.77), (2.80), (2.81) и (2.84) — (2.85) соответственно. Мы ввели релятивистский потенциал (уравнение (2.89)) и показали, что он позволяет использовать нерелятивистские уравнения в магнитных полях даже в случае высоких энергий частиц. Затем был введен электронно-оптический показатель преломления (соотношение (2.92)) и установлены аналогии между геометрической оптикой, с одной стороны, и электронной и ионной оптикой, — с другой. Были определены траектории частиц в однородных электростатическом и магнитном полях посредством точного решения траекторных уравнений. В качестве практических примеров рассмотрены плоские конденсаторы, длинные магнитные линзы, электростатические и магнитные отклоняющие системы, простые анализаторы масс и скоростей. Наконец, были приведены законы подобия электронной и ионной оптики (соотношения (2.183) — (2.188) и (2.190)).  [c.63]


В 6 изложен, как нам представляется, наиболее простой приём составления основных дифференциальных операций в криволинейных координатах. Мы ограничились случаем ортогональных координат, как наиболее важным для приложений. В 7 этот приём применён для записи в ортогональных криволинейных координатах основных соотношений механики сплошной среды, в том числе для составления условий сплошности. Другой вывод условий сплошности (в любых криволинейных координатах) дан в статьях Т, Н. Блинчикова Дифференциальные уравнения равновесия теории упругости в криволинейной координатной системе (Прикл. матем. и мех., 2, 1938, стр. 407) и В. 3. Власова Уравнения неразрывности деформаций в криволинейных координатах (там же, 8, 1944, стр. 301). Запись уравнений сплошности в сферических и цилиндрических координатах приведена в книге В. 3. Власова Общая теория оболочек (Гостехиздат, 1949).  [c.69]


Смотреть страницы где упоминается термин Основные уравнения и соотношения в криволинейных координатах : [c.3]    [c.241]   
Смотреть главы в:

Теория упругости  -> Основные уравнения и соотношения в криволинейных координатах

Теория упругости  -> Основные уравнения и соотношения в криволинейных координатах



ПОИСК



Координаты криволинейные

Основные Координаты

Основные соотношения

Основные уравнения и соотношения

Уравнение основное

Уравнения в координатах

Уравнения основные



© 2025 Mash-xxl.info Реклама на сайте