Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Мезонные резонансы

Сводка результатов по мезонным адронам, т. е. мезонным резонансам, дана в табл. 42. Для мезонных адронов в последнее время также были предложены унифицированные обозначения. Они строятся по тому же принципу, что и в барионном случае, т. е. одинаковыми буквами обозначаются частицы и резонансы  [c.669]

В табл. 14 и 15 приведены более подробные характеристики некоторых барионных и мезонных резонансов.  [c.293]

СТОЯНИИ о- а второй — векторные мезонные резонансы, т. е. адроны, находящиеся в состоянии 1 При этом нонет можно рассматривать как случайное совпадение квантовых чисел у членов унитарного октета и соответствующего унитарного синглета. Сравнение рис. 175—177 показывает, что все три фигуры построены как бы по единому образцу они содержат сходные зарядовые мультиплеты и массы всех членов супермультиплета близки (для мезонов в смысле Ae/s< l).  [c.307]


Очевидно, что в процессе (7.115) энергия относительного движения с точностью до ширины Г г -мезонного резонанса будет равна  [c.365]

Адроны, построенные по правилам (2) из и- и d-K., образуют семейство обычных адронов (к пим относятся нуклоны, я- и р-мезоны, резонансы с 5 = = f =0). Мезоны и барионы, в состав к-рых помимо и- и d-K. входит один или более s-K., образуют семейство странных частиц. Введение в состав адронов с- и 6-К. (наряду с Ы-, d-, -К.) даёт начало семействам соответственно очарованных частиц и красивых (прелестных) частиц. Знание кваркового строения адронов (2) позволяет полностью воспроизвести все известные в систематике адронов группы этих частиц и изученные характеристики отд. адронов.  [c.341]

МЕЗОНЫ И МЕЗОННЫЕ РЕЗОНАНСЫ  [c.818]

Характеристики мезонов и мезонных резонансов [9,10]  [c.818]

К настоящему времени обнаружено много других резонансов, например известны мезонные резонансы с массой более 3000 Ше.  [c.259]

На расстояниях, меньших 0,2 фм, потенциал становится отталкивающим. Такое поведение потенциала объясняется тем, что происходит обмен мезонными резонансами р (с массой 770 МэВ/с ) и (О (с массой 785 МэВ/с ), спин которых равен единице. При значении массы 785 МэВ/с формула (2.9) дает радиус взаимодействия, равный 0,25 фм.  [c.62]

Третья часть книги посвящена ядерным силам и элементарным частицам. Здесь рассмотрены опыты по нуклон-нуклонным рассеяниям и свойства ядерных сил рассеяние быстрых электронов на ядрах и протоне и структура нуклонов свойства х- и я-мезонов и вопрос об изотопической инвариантности ядерных взаимодействий свойства и систематика странных частиц получение и свойства антинуклонов и других античастиц и свойства нейтрино и антинейтрино цикл вопросов, связанных со свойствами слабого взаимодействия, и, наконец, вопрос о квазичастицах (резонансах).  [c.12]

В самые последние, шестидесятые, годы наиболее интересными результатами являются открытие и изучение резонансов (квазичастиц), доказательство существования двух видов нейтрино (и антинейтрино), обнаружение симметрии в свойствах сильновзаимодействующих частиц и резонансов, открытие несохранения комбинированной четности в распаде К -мезонов и синтез элемента 104.  [c.24]

Простейшим примером ядерного взаимодействия является сильное притяжение между нуклонами, находящимися на очень малых (10 см) расстояниях друг от друга внутри атомного ядра. В дальнейшем (часть третья) мы узнаем, что существуют и другие частицы (я- и /С-мезоны, гипероны, антинуклоны, антигипероны, квазичастицы, или резонансы), которые также участвуют в сильном ядерном взаимодействии. Переносчиками ядерного взаимодействия, т. е. ядерными квантами, являются я-ме-зоны (см. 79).  [c.201]


Второй этап исследования элементарных частиц начался в 1938 г., когда был открыт р,-мезон. Этот период исследования насыщен интереснейшими открытиями новых элементарных частиц (я- и /С-мезоны, гипероны, антинуклоны, антигипероны) и резонансов и новых свойств старых частиц (структура нуклона, прямое взаимодействие нейтрино и антинейтрино с веществом, два сорта нейтрино и др.). В связи с особым значением этих вопросов в современной ядерной физике, они будут рассмотрены более подробно ( 76—86).  [c.542]

Впоследствии резонансы (в несколько другой форме) были обнаружены для многих элементарных частиц (см. 85). В настоящее время исследование резонансов является одной из наиболее важных задач ядерной физики, так как оно позволяет изучать взаимодействие между собой таких элементарных частиц (например, двух я-мезонов), для которых невозможно осуществить прямой процесс рассеяния.  [c.590]

Значения основных квантовых чисел (В, S я Т) для всех известных барионов, мезонов и резонансов приведены в табл. 43. Кроме того, в таблице даны значения гиперзаряда У = В -Ь S, мультипольности изотопического мультиплета М = 2Т +  [c.669]

Эти простые закономерности траекторий Редже дают возможность примерно предсказывать значения масс новых барионов и барионных резонансов по известным частицам или резонансам с данным набором квантовых чисел. Аналогичные траектории могут быть построены также для мезонов и мезонных  [c.697]

Кроме обычных элементарных частиц, время жизни которых определяется их нестабильностью относительно электромагнитного (х сек) и слабого (t lO сек) процессов распада, в настоящее время открыто несколько десятков весьма короткоживущих (t 10 сек) квазичастиц, или резонансов, нестабильных относительно сильного взаимодействия. Резонансы, как и обычные частицы, характеризуются массой, барионным зарядом, спином, электрическим зарядом, изотопическим спином, четностью, странностью. Единственным отличием их от обычных сильновзаимодействующих частиц (мезонов и барионов) является очень малое время жизни из-за быстрого распада. Если сравнение резонансов с обычными частицами производить в преде-  [c.703]

Второй том учебника Экспериментальная ядерная физика посвящен описанию свойств элементарных частиц и взаимодействий, в которых они участвуют (сильных, электромагнитных, слабых). Здесь рассмотрены нуклон-нуклонные взаимодействия при различных энергиях, ядерные силы, теория дейтона, структура нуклонов, свойства лептонов, мезонов, гиперонов и резонансов, физика античастиц, унитарная симметрия.  [c.2]

Согласно схеме Сакаты — Окуня, кроме псевдоскалярных октета и синглета должны существовать векторный унитарный октет мезонов с аналогичной структурой расщепления на изотопические мультиплеты и векторный унитарный синглет. Их можно получить, комбинируя барионы и антибарионы при параллельно направленных спинах и 1=0. В природе действительно встречаются девять векторных мезонов (мезонных резонансов), отвечающих состоянию 1" (см. рис. 176) с близкими значениями масс. (Совпадение массы девятого мезона с массами членов октета с точки зрения схемы Сакаты можно считать случайным.)  [c.303]

Однако из сопоставления с открытыми барионными супер-мультиплетами видно, что известные барионы и барионные резонансы не удается удовлетворительным образом классифицировать по схеме Сакаты , которая, таким образом, дает правильное описание только для мезонов и мезонных резонансов.  [c.304]

Зарядовая четность нейтральных мезонных резонансов с нулевыми странностью, очарованием и другими характеристиками, входящих в состав изотопического мультиплета, обозначается символом Сп. Надежно установленные квантовые числа мезонных резонансов в табл. 36.5 подчеркнуты отсутствие черты означает, что указанные квантовые числа наиболее вероятны. Цифры п скобках после символа частицы, например К (892), означают массу частицы в мегаэлектрон-вольтах и служат для идентификации данной частицы. Остальные обозначения те же, что в табл. 36.4.  [c.992]

Для распадов мезонных резонансов с нулевой странностью нередко проявляется запрет по G-четности (см. 2, п. 9), снижающий вероятность распада на четыре порядка. С-четности для нестранных мезонов приведены в табл. 7.5. Например, характеристика О" при т]-мезоне означает нулевой спин, отрицательную обычную четность и положительную С-четность. Как мы уже говорили в 2, С-четность сохраняется в сильных взаимодействиях и при нулевой странности имеет определенное значение. Поскольку 0-четность мультипликативна и равна минус единице для пиона, то С-четная система может распадаться только на четное число пионов, а G-нечетная система — только на нечетное число пионов. Так, например, т1-мезон G-четен. Поэтому за счет сильных взаимодействий он не может распадаться на три пиона. Но распад его на два пиона запрещен еще сильнее. Действительно, так как спины ri-мезона и пиона — нули, то два пиона должны рождаться в S-состоянии. Поэтому их волновая функция четна (здесь уже мы говорим об обычной четности). А ri-мезон — нечетен. На опыте было обнаружено, что т]-мезон распадается на три пиона, причем ширина резонанса столь мала, что измерению не поддается. Поскольку трехпионный распад за счет сильных взаимодействий запрещен, то, значит, Б реальном распаде участвуют и электромагнитные взаимодействия. Поэтому т -мезон должен распадаться на два у-кванта примерно с такой же вероятностью, как и на три пиона. Специально проведенные измерения подтвердили, что в 40% случаев идет распад на два Y-кванта. Сохранением G-четности обусловлен запрет двух-пионного распада Ф-мезона.  [c.368]


К сожалению, возможности проверки квантовой электродинамики ограничены эффектами, обусловленными процессами с участием сильно взаимодействующих частиц, потому что соответствующие диаграммы уже не поддаются точному расчету. В первую очередь начинает сказываться вкрапление р-мезонной линии, а также пионной петли в фотонную линию (рис. 7.69). В опытах первой группы эти поправки становятся существенными, начиная с уже доступных расстояний см. В опытах второй группы эта поправка сказывается по-разному, в зависимости от конкретных условий. Раньше всего вклад диаграммы рис. 7.69, а становится заметным в р-мезонном резонансе для процессов е" -f е+ е + е и е + е Г + j,+. Оба экспериментальных сечения при энергии 765 МэВ, соответствующей массе р-мезона, имеют отчетливые резонансы, следующие из расчетов по квантовой электродинамике. Это нарушение КЭД происходит уже на расстоянии порядка Ю см. Однако вдали от резонансов (или для процесса е + е е + е, в котором таких резонансов нет) поправки за счет сильных взаимодействий начнут сказываться только от расстояний порядка 5х X10 см, т. е. при энергиях столкновения порядка 10—15 ГэВ (в СЦИ). Ускорители на встречных пучках на такие энергии сейчас строятся. На них можно будет провести последнюю проверку пределов применимости КЭД. При более высоких энергиях эффекты  [c.395]

Таблица 36.2 Символы мезоиов и мезонных резонансов [8] Таблица 36.2 Символы мезоиов и мезонных резонансов [8]
Теоретическое предсказание существования мезонных резонансов р и (О (Сакураи).  [c.311]

Октетная симметрия хорошо подтверждается экспериментом. Действительно, кроме барионного октета 1/2" существуют два мезонных нонета (см. рис. 457 и 458). Первый объединяет все известные псевдоскалярные мезонные адроны, находящиеся в состоянии 0 , а второй — векторные мезонные резонансы, т. е. мезонные адроны, находящиеся в состоянии 1 . При этом нонет можно рассматривать как случайное совпадение квантовых чисел у членов унитарного октета и соответствующего унитарного синглета. Сравнение рис. 457—459 показывает, что все три фигуры построены как бы по единому образцу они содержат сходные зарядовые мультиплеты и массы всех членов супермультиплета относительно близки.  [c.317]

В таблицах 27 и 28 выписаны свойства наиболее достоверных резонансов (барио шых и. мезонных адрогюв соответственно).  [c.377]

Все силыю взаимодействующие частицы и резонансы называются адронами (крупными частицами). Их число велико. В таблице 27 приведены некоторые барионные адроны, а в таблице 28 приводятся мезонные адроны. В таблицы включены только те адроны, для которых характеристики определены достаточно надежно. Во второй колонке таблиц приводятся старые обозначения адронов, не употребляемые в настоящее время. В первой колонке таблицы приводятся обозначения, предлол<енные в последнее время, исходя из следующей системы обозначений  [c.378]

Обобщением идей Э. Ферми и Ч. Янга на странные частицы является модель С. Саката, которая разрабатывалась Л. Маки, Л. Б. Окунем, М. А. Марковым и другими. Согласно этой модели истинно элементарными, сильно взаимодействующими частицами являются только три частицы протон, нейтрон и Л<>-гиперон — вместе с их античастицами. Все остальные барионы, мезоны и резонансы — являются составленными из этих частиц по следующей схеме  [c.385]

Максимумы в сечениях рассеяния л-мезонов на нуклонах при энергиях 190, 600, 900 и 1300 Мэе называются нуклонными резонансами. Нуклонные резонансы имеют строго определенные значения энергии, спина, изотопического спина. Кроме того, они обнаруживаются в различных процессах. Так, например, резонанс при Г,г = 190 Мэе наблюдается также при фоторождении л-мезонов.  [c.589]

Тя, т. е. некая квазисвязанная система из л-мезона и нуклона, существующая хотя и очень малое, но конечное (т ф 0) время. Эта система называется резонансом, нестабильной частицей, квазичастицей. Энергия резонанса однозначно определяется релятивистски инвариантным выражением  [c.660]

Опыт показывает, что для интерпретации таких процессов можно пользоваться кинематикой обычных реакций, приписывая Д-резонансу вполне определенные значения кинетической энергии и импульса. Так, например, реакция я+ + р- Д++ -f я° обладает всеми свойствами двухчастичного процесса (моноэнерге-тичность Д+ -резонанса и я°-мезона, однозначная связь между углами разлета Д -резонанса и я°-мезона).  [c.661]

В настоящее время силью взаимодействующих частиц и резонансов (называемых BMe i-e адронами ) известно так много, что уже можно пытаться их классифицировать с некоторой надеждой на успех. Описание таких попыток начнем с систематизации имеющихся сейчас данных об адронах в виде двух таблиц таблицы барионных адронов и таблицы мезонных адронов. (В таблицы включены только те адроны, параметры которых определены с достаточно высокой степенью надежности.)  [c.665]

Сильновзаимодействующие частицы и резонансы вместе называются адронами. В последнее время было предпринято несколько удачных попыток классифицировать адроны на основе унитарной симметрии. Гипотеза унитарной симметрии опирается на существование в природе определенных совокупностей (унитарных мультиплетов, сверхмультиплетов, супермультиплетов) адронов с одинаковыми спинами и четностями (псевдоскалярный мезонный октет, векторный мезонный нонет, барионный октет V2+ и барионный декуплет /2+).  [c.704]

Магнитный резонанс 74—75 Масса релятивистская 27 Массовое число 31 Масс-спектрометр Демпстера 29—30 Медленные нейтроны 301 Мезоатом 54, 573 Мезонная теория Юкава 549 Мезонный нонет 683  [c.716]

Второй том посвящен физике элементарных частиц и их взаимодействиям. В книге рассмотрены нуклон-нуклонные взаимодействия при низких и высоких энергиях и свойства ядерных сил, изложена теория дейтона и элементы мезонной теории рассмотрены опыты по упругому и неупругому рассеянию электронов на ядрах и нуклонах и обсуждается проблема нуклон-ных форм-факторов подробно изложена физика лептонов, я-мезонов и странных частиц рассмотрена физика антинуклонов и других античастиц, а также антиядер изложены систематика частиц и резонансов на основе унитарной симметрии н цикл вопросов, связанных со свойствами слабых взаимодействий.  [c.6]



Смотреть страницы где упоминается термин Мезонные резонансы : [c.669]    [c.704]    [c.992]    [c.301]    [c.365]    [c.690]    [c.811]    [c.144]    [c.344]    [c.348]    [c.661]   
Смотреть главы в:

Физические величины. Справочник  -> Мезонные резонансы



ПОИСК



Мезоний

Мезоны и мезонные резонансы

Мезоны и мезонные резонансы

Пи -мезон

Резонанс



© 2025 Mash-xxl.info Реклама на сайте