Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Устойчивость сжатого стержня в упруго-пластической

Упругая устойчивость сжатых стержней. Нетрудно убедиться, что нарушение устойчивости первого рода в случае растянутых стержней невозможно. Такие стержни, получив случайное искривление или закручивание, должны возвратиться к первоначальной форме равновесия. Таким образом, для растянутых стержней возможна лишь потеря устойчивости второго рода при достижении напряжениями предела текучести или временного сопротивления. Напряжения, равные временному сопротивлению, никогда не допускаются, пластическая же деформация растянутого стержня не снижает его предельной грузоподъемности. Поэтому вопрос об устойчивости деформиро -1 ° ванного состояния растянутого стержня не имеет  [c.344]


Прямой центрально сжатый стержень постоянного сечения (рис. 1,а) представляет собой простейшую реальную конструкцию, способную при определенных условиях потерять устойчивость, видимым проявлением чего является выпучивание, т. е. возникновение бокового. смещения, не требующего приложения поперечных сил. Долгое время этот объект служил иллюстратором основных сторон явления неустойчивости в деформируемых системах, пока не возникла необходимость разобраться в явлении выпучивания деформируемых систем, материал которых является сложной средой и не подчиняется закону упругости. Оказалось, что уже для упруго-пластического материала, если не навязывать стержню определенный тип поведения, математическое описание явления становится столь сложным, что иллюстративные качества этого объекта утрачиваются полностью и приходится искать более простой объект.  [c.7]

Если система не обладает достаточной гибкостью, то потеря устойчивости может происходить в упруго-пластическом состоянии. Ф. Энгессер развил теорию устойчивости центрально сжатых стержней за пределом упругости в предполон ении, что во всех точках поперечного сечения происходит процесс нагружения. В этом случае критическая сила определяется не модулем упругости, как в задаче для упругого материала, а касательным модулем (мы получаем касательно-модульную критическую силу). Ф. С. Ясинский по поводу этой теории заметил, что следует учесть разгрузку в части сечения. Это приводит к существованию нейтральной оси сечения. Учитывая разгрузку в поперечном сечении в предположении, что результирующая осевая сила остается неизменной, Ф. Энгессер получил формулу для критической силы, которая отличается от соответствующей формулы для упругого стержня тем, что вместо модуля упругости в нее входит приведенный модуль, зависящий от формы поперечного сечения стержня. В течение почти всей первой половины нашего столетия считалось, что приведенно-модульная нагрузка и есть критическая нагрузка для упруго-пластических систем и что первоначальный результат Энгессера ошибочен. Было опубликовано большое число работ, в которых на основе этой концепции решаются различные задачи.  [c.346]

Постановка вопроса вполне резонная, пригодная как при упругих деформациях, так и при пластических. Но при чисто упругой постановке введение возмущений на сжатие и растяжение ничего не меняет. Критическая сила остается неизменной. А при пластических деформациях картина становится иной. И это легко понять. Представьте себе, что в дополнение к изгибной деформации стержню сообщено еще и малое осевое сжатие. Тогда в поперечных сечениях стержня произойдет смещение областей разгрузки и догрузки, а при неблагоприятном сочетании двух типов возмущений зона разгрузки вообще может исчезнуть. Это означает, что стержень на устойчивость следует считать уже не по приведенному модулю Энгессера — Кармана, а по касательному Е. Выходит, что критическая сила в зависимости от обстоятельств может проявить себя в интервале двух крайних значений — одного, определяемого по приведенному модулю, и второго — по касательному. Из этих двух следует выбрать, конечно, наименьшее и рассчитывать сжатый стержень на устойчивость надо по касательному модулю.  [c.156]


Вопрос о равновесных формах упруго-пластической системы, как уже указывалось в 18.2, раздел 8.1, впервые был рассмотрен в 1889 г. Ф. Эн-гессером, который в задаче о сжатом прямолинейном стержне полагал, что при выпучивании сила не меняется, а деформирование — и догрузка, и разгрузка — протекает с касательным модулем. Значение силы, при которой становится возможной искривленная форма равновесия стержня, аналогично Р и называется касательно-модульным. Позднее Ф. Энгессер (в 1895 г.) и Т. Карман (в 1909 г.) учли неодинаковость модулей догрузки и разгрузки, считая по-прежнему, что развитие искривленной формы равновесия стержня происходит при постоянной силе. Значение такой силы аналогично Р,. и называется приведенно-модульным. В 1946—1947 гг. Ф. Шенли, изучая систему, сходную с рассмотренной в этом разделе, и допуская возможность изменения нагрузки в процессе развития новой формы равновесия, показал, что наклонное положение становится возможным при касательно-модульной нагрузке. Решение, изложенное в тексте, принадлежит Я- Г. Пановко (см. его статью О современной концепции упруго-пластического продольного изш-ба. — В кн. Проблемы устойчивости в строительной механике. — М. Строй-издат, 1965).  [c.426]

Лишь после опубликования работ Ф. Шенли, выдвинувшего новый подход к рассмотрению процесса потери устойчивости при упруго-пластической деформации сжатого стержня (1946 г.), стало возможным обобщение формулы Эйлера и на неупругую область. Рассматривая потерю устойчивости как процесс, происходящий в движении при непрерывном возрастании сжимающих сил, Шенли по существу вновь возвратился к считавшейся неверной первоначальной формуле Энгессера (27.18) с касательным модулем упругости Ei (поскольку при малом искривлении оси стержня в момент потери устойчивости возрастание сил Р на величину ДР снимает разгрузку волокон на выпуклой стороне вследствие дополнительного сжатия).  [c.462]

Анализ вьпгучивания и устойчивости идеальных упруго пластических систем не является общим потому, что реальные алементы конструкций имеют различные несовершенства. Неустойчивость реальных конструкций и их элементов наступает в предельных точках точно так же, как и для идеальных систем с устойчивым пос-лебифуркационным выпучиванием. В связи с этим все начальные несовершенства геометрической формы и внецентренного приложения нагрузок принимают за возмущающие факторы с наложенными на них ограничениями. Процесс выпучивания системы с начальными несовершенствами рассматривают как возмущенный процесс, с помощью которого анализируют устойчивость идеализированной конструкции. На рис. 7.5.2 приведены два случая сжатия стержня эксцешрично приложенной силой Р. Если эксцентриситет 5 мал и не превосходит некоторого предельного значения 6 , то стержень теряет устойчивость в предельной точке. Если 5>5., то задачи устойчивости не возникает.  [c.496]

Попутно не вредно обсудить вопрос о так называемых константах материала, термине, широко употребляемом в механике сплошной среды. Константы или постоянные материала действительно существуют, пока материал рассматривается на уровне кристаллической решетки. Чем больше по масштабной шкале (укрупняя объем) мы уходим от параметров решетки, тем менее константы остаются таковыми. Для уяснения степени постоянства укажем на введенное Я.Б. Фридманом деление механических свойств на докритические, критические и закритические [261]. Все они в равной мере относятся к трем, последовательно возникающим и параллельно идущим вплоть до полного разрушения, видам деформации — упругой, пластической и разрушения. Докритические определяются по допуску на величину данного вида деформации или на появление нового, и это на стадии возрастающей несущей способности. Папример, условный предел текучести определяется по допуску на величину появившегося на фоне упругой деформации, нового вида деформации — пластической. Докритические характеристики можно считать постоянными материала. Па стадии упругой деформации модули упругости и коэффициент Пуассона — докритические характеристики и, следовательно, постоянные материала. По, например, критическое напряжение Эйлера сжатого упругого стержня есть механическая характеристика, отражающая свойства упругости в момент потери устойчивости и, как и положено критической характеристике, зависит не только от докрити-ческих характеристик, но и от формы и размеров стержня и условий закрепления. Аналогично предел прочности (временное сопротивление) является критической характеристикой, поскольку шейкообразо-вание представляет собой смену форм равновесия и сопровождается прекращением роста несущей способности. Естественно, что предел прочности должен зависеть и зависит от размеров, формы образца и схемы приложения нагрузки. По привычка считать предел прочности постоянной материала (естественно, имеется в виду неизменность условий нагружения, скорости, температуры, среды и т.п.) есть результат стандартизации метода его определения. Изменив габариты, форму сечения, взяв, наконец, вообще реальную конструкционную деталь, получим сильно различающиеся значения пределов прочности, что и должно быть для критической характеристики. Поэтому неудивительно, что при разрушении реальной детали напряжение в  [c.14]



Смотреть страницы где упоминается термин Устойчивость сжатого стержня в упруго-пластической : [c.343]    [c.52]    [c.193]    [c.9]    [c.460]    [c.223]    [c.429]    [c.413]   
Прикладная механика твердого деформируемого тела Том 3 (1981) -- [ c.0 ]



ПОИСК



Сжатие упругих тел

Стержень сжатый

Стержни упругие

Стержни упругие Устойчивость

Стержни упругие на упругих

Стержни упруго-пластическое

Стержни — Стержни упругие

Устойчивость сжатого упругого стержня

Устойчивость сжатых стержней

Устойчивость стержней

Устойчивость стержней при сжатии

Устойчивость упругих тел



© 2025 Mash-xxl.info Реклама на сайте