Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Напряжение двойникования

Рис. 79. Корреляционная связь между напряжением двойникования и энергией дефекта упаковки для сплавов на основе Си Рис. 79. <a href="/info/220213">Корреляционная связь</a> между напряжением двойникования и <a href="/info/32083">энергией дефекта упаковки</a> для сплавов на основе Си

Критическое напряжение двойникования а ,д связано с эффективным размером зерна (или величиной фрагмента) уравнением Петча—Стро  [c.246]

Особенно интенсивно происходит двойникование в металлах с ограниченным числом систем скольжения. При этом, создавая мощные концентраторы напряжения, двойникование инициирует, например, в ГПУ-металлах скольжение по дополнительным призматическим и пирамидальным системам, что приводит к существенному повышению пластичности [5, 17]. В некоторых ориентировках монокристаллов с ГПУ-решеткой двойникование вообще является доминирующим механизмом пластической деформации [5, 18]. В ОЦК-металлах концентраторы напряжений у верщин двойников и высокая скорость протекания процесса двойникования способствуют раскрытию трещин и соответственно хрупкому разрушению металлов [9, 19] ограничивая таким образом их низкотемпературную пластичность.  [c.9]

Большое влияние на первоочередное получение одним из трёх напряжений (нормальным напряжением, напряжением скольжения или напряжением двойникования) критического значения оказывает ориентировка плоскостей скольжения монокристалла по отношению к действующей силе. В зависимости от ориентировки плоскостей скольжения кристалл может проявить различную склонность к хрупкому или пластичному состоянию.  [c.268]

Пластическое деформирование изменяет структуру материала поверхностного слоя. Пластическое деформирование твердых тел складывается из четырех наиболее важных элементарных процессов скольжения по кристаллографическим плоскостям (скольжение в отдельных зернах поликристаллического тела происходит обычно по нескольким плоскостям, число которых возрастает с повышением напряжения) двойникования кристаллов отклонения атомов от правильного расположения в решетке и их тепловое движение разрушения структуры.  [c.97]

С момента начала пластической деформации реализуются два основных типа процесса деформации кристалла скольжение и двойникование. Для того чтобы происходила пластическая деформация, независимо от ее типа необходимо наличие касательных (сдвиговых) напряжений.  [c.129]

В выражении для приведенного напряжения сдвига (63) подразумевается, что как в начале пластической деформации (напряжение то), так и на любой ее стадии (напряжение т) приложенное растягивающее напряжение Сти для кристаллов разной ориентировки изменяется в широких пределах при одинаковой деформации. Это означает, что для предельных значений углов (3i, чтобы достичь требуемого приведенного напряжения сдвига в неблагоприятно ориентированной базисной плоскости, необходимы значительные растягивающие напряжения. В этих условиях часто происходит скольжение по другим плоскостям — пирамидальным или призматическим, или двойникование поэтому поведение таких кристаллов нельзя просто связать с характерными особенностями кристаллов, деформируемых исключительно путем скольжения по базисной плоскости. В общем идеального поведения можно ожидать для кристаллов с величиной угла Ро в интервале 10—80°.  [c.121]


Энергия когерентной границы двойников дв=0,5х Х д.у, поэтому склонность к двойникованию с уменьшением энергии дефекта упаковки увеличивается. Так, в г. ц. к. кристаллах алюминия деформационные двойники не наблюдаются, а в кристаллах меди, деформированных при 4 К и высоких напряжениях в серебре, золоте и никеле, они обнаружены для меди напряжения сдвига составляют 150, а для никеля 3 МПа. Указанные напряжения достигают при низких температурах или при больших скоростях деформации.  [c.137]

Двойникование в металлах с г. ц. к. решеткой приводит к появлению зубчатости на кривых напряжение — деформация (см. рис. 75). Кристаллографические характеристики двойникования и его геометрия представлены  [c.137]

ДИСЛОКАЦИОННЫЙ МЕХАНИЗМ ДВОЙНИКОВАНИЯ. Для начала двойникования требуется более высокое напряжение, чем для скольжения, однако эти напряжения значительно ниже теоретической прочности кристалла. Поэтому механизм одновременного движения всех атомов в двойнике представляется нереальным  [c.140]

Минимальное напряжение, необходимое для зарождения двойникования полюсным механизмом, должно быть таково, чтобы скомпенсировать энергию дефекта упаковки за первый период действия источника, т. е.  [c.143]

Для железа с энергией дефекта д.у 2-10 мДж/ /см уравнение (83) дает сг 0,02 G. Реальные напряжения, при которых имеет место двойникование, обычно составляют 10 G, т. е. для зарождения двойника необходима дополнительная концентрация напряжений.  [c.143]

Другой механизм двойникования связан с движением единственной частичной дислокации. Частичная дислокация может оторваться от расщепленной конфигурации, если приложенное напряжение а>Ед.у/Ь. Источниками таких дислокаций могут быть  [c.143]

Для пластической деформации скольжением и двойникованием общим являются их дислокационный механизм и однородность деформации. Геометрия и дислокационная модель скольжения объясняют поворот осей кристалла в процессе деформации. Теория пересечения двойника скользящей дислокацией — перегибы на двойниковой границе и ее искажение, при этом общим здесь является однородность деформации по всему кристаллу во время скольжения или в двойниковой прослойке при двойниковании. Однако в деформированных кристаллах распределение дислокаций неравномерное, а возникающие дислокационные сетки и субграницы при избытке дислокаций одного знака приводят к микроскопической неоднородности, создавая локальную разориентировку, достигающую нескольких градусов. При простейших видах деформации (растяжение, сжатие) возникают значительные разориентировки. Для неоднородных и неравномерных полей напряжений и деформаций в макромасштабе (прокатка, кручение, изгиб, прессование и т. п.) появление существенной разориентировки неизбежно.  [c.148]

Наряду со скольжением пластическая деформация гексагональных металлов может осуществляться также двойникованием, которое происходит (см. гл. III) в том случае, если ось деформации образует малые углы с гексагональной осью и базисной плоскостью. Если ось кристалла близка к базисной плоскости, то касательное напряжение в базисной плоскости очень мало, тогда как в призматических и пирамидальных плоскостях оно может иметь довольно большую величину в зависимости  [c.202]

Одновременно с двойникованием возможно развитие пластической деформации скольжением. Реализация того или иного вида пластической деформации будет оп-. ределяться соотношением критических напряжений сдвига ао для скольжения и Оод для двойникования внутри фрагментов. Размер зерна dx (или фрагмента), соответствующий равенству напряжений сдвига и двойникования, получается совместным решением уравнений Холла—Петча для сдвига и Петча—Стро для двойникования  [c.246]

Рис. 147. Зависимость деформирующего напряжения Од при сдвиге /) и двойниковании (2) от величины зерна. Кривая 3 — максимально возможная пластическая деформация вследствие двойникования Рис. 147. Зависимость деформирующего напряжения Од при сдвиге /) и двойниковании (2) от <a href="/info/134811">величины зерна</a>. Кривая 3 — максимально возможная <a href="/info/1487">пластическая деформация</a> вследствие двойникования

По мере понижения температуры предел текучести резко возрастает, так как величина силы Пайерлса — Набарро в о. ц. к. металлах сильно зависит от температуры. Если критическое напряжение течения становится достаточно большим, то развивающееся при этом двойникование создает благоприятные условия для зарождения трещин по одному из механизмов, предусматривающих наличие двойников (см. рис. 225, г,д).  [c.430]

Изменение напряжения при ударном нагружении (е>10 с- , участок V, см. рис. 240, а) может быть следствием также значительных структурных изменений, происходящих в металле двойникования, изменения характера скольжения, фазовых превращений и др.  [c.467]

В частности, наблюдается сильное различие диаграмм Os—6 для металлов с разной кристаллической решеткой в области низких температур. Например (рис. 254), с повышением температуры предел текучести уменьшается, однако снижение у тантала, железа, вольфрама, молибдена выражено значительно сильнее, чем у никеля. Низкотемпературное плато у вольфрама и молибдена может быть связано с двойникованием. Считается, что сильная температурная зависимость напряжения течения у о. ц. к. металлов и переход из вязкого состояния в хрупкое в области низких температур обусловлены влиянием примесей внедрения (С, N) и вкладом в величину Ts, обусловленным силами Пайерлса — Набарро. Вклад от пересечения леса дислокаций для о. ц. к. металлов незначителен и оказывается более эффективным для г. ц. к. металлов (см. гл, IV).  [c.473]

Основным механизмом пластической деформации металлов и сплавов является сдвиговое перемещение частей кристалла (зерна) относительно друг друга по плоскостям скольжения (двойникования), которое происходит благодаря движению под действием приложенных напряжений линейных дефектов кристаллической решетки — дислокаций [4, 8, 10, 11].  [c.6]

Характерное для ОЦК-металлов повышение предела текучести в области низких температур приводит во многих случаях к включению дополнительного механизма пластической деформации — механического двойникования [5, 17, 111]. Обязательным условием начала двойникования является, как известно [111, 22], наличие определенного уровня концентраций напряжений. Такие концентрации напряжений возникают под нагрузкой на отдельных элементах структуры материала (включения, стыки трех зерен и т. д.) или могут быть обусловлены геометрической формой испытываемых образцов (галтели). Кроме того, концентрации напряжений могут возникать у вершин плоских скоплений возле границ зерен [26, 103].  [c.56]

Двойникование при низких температурах наблюдается также в ГЦК-металлах [5, 112] и особенно важную роль оно играет в процессе пластической деформации ГПУ-металлов [17, 113], имеющих ограниченное число систем скольжения, что затрудняет релаксацию концентраторов напряжений, следовательно, способствует началу двойникования.  [c.56]

Проанализируем эти данные с позиций известных моделей деформационного двойникования, учитывая, что для зарождения двойника требуется определенная концентрация напряжений [17, 21, 111], которая может быть обеспечена, например, за счет предшествующего скольжения [117, 123].  [c.58]

Если нагромождение дислокаций возникло при температуре Т Тд (когда двойникование не имеет места), то будет наблюдаться только скольжение, если же температура испытания приближается к Гд, то концентрация напряжений в точке А может релаксировать как путем скольжения, так и с помощью двойникования. Учитывая существенное различие в скорости движения полных дислокаций скольжения и скорости двойникования, можно ожидать, что вблизи  [c.59]

Рассмотрим совместно ход температурных зависимостей напряже--ний начала двойникования и начала скольжения для поликристалла с размером зерна О (рис. 2.19). Кривая напряжения начала двойникования о в отличие от аналогичной кривой для скольже-. ния а° имеет несколько необычный вид с повышением температуры кривая понижается, проходит через минимум при некоторой температуре Т, затем начинает расти. Такой ход кривой (Т) обусловливается температурной зависимостью величины Ку, влияние которой в интервале температур Т > Т значительно превосходит понижение напряжения начала двойникования за счет уменьшения оо при повыше- НИИ температуры (см. рис. 2.19).  [c.62]

Из условия равенства напряжений начала двойникования о № начала скольжения о при температуре Тд можно определить диапа-  [c.63]

Экспериментальные кривые [22] температурной зависимости (рис.2.20) предела пропорциональности (который в первом приближении принимается за напряжение начала пластической деформации) при наличии перехода от скольжения к двойникованию несколько отличается от схемы, приведенной на рис. 2.19, так как ряд участков кривых о и ол практически не реализуется. Действительно, при температуре Т > Гд (см. рис. 2.20) в процессе роста внешней нагрузки первым достигается уровень напряжений о и начинается пластическая деформация скольжением, в течение которой резко увеличивается плотность подвижных полных дислокаций, что, как неоднократно отмечалось. [21, 118, 121] приводит к подавлению двойникования, т. е. участок кривой сгД выше температуры Гд фактически не существует. С другой. стороны, при температуре Г < Тд из-за наличия концентраторов.  [c.63]

Одним из первых исследователей, заметивших влияние поверхности на механические свойства, был Роскоу. Еще в 1934 г. он обнаружил, что критическое значение проекции касательного напряжения на направление скольжения для монокристалла кадмия уменьшается в 2 раза при удалении оксидной пленки с поверхности кристалла. В дальнейшем были проведены многочисленные исследования, в которых изучалось влияние оксидных пленок, керамических и металлических покрытий на напряжение сдвига [118—121], напряжение двойникования [122, 123], форму диаграммы напряжений [119, 121], микроскопические характеристики деформации [121, 122], хрупкое разрушение [124], внутреннее трение [125] и эффекты аномального восстановления деформации [126]. Очень небольшое число работ было посвящено изучению роли поверхности в процессах усталости и ползучести различных моно- и поликристаллов [127, 128].  [c.27]


Двойникование наблюдается в ряде кристаллов, особенно имеющих плотноупакованную гексагональную или объемно-центрированную кубическую решетку. При двойниковании происходит сдвиг определенных областей кристалла в положение, отвечающее зеркальному отображению несдвинутых областей. Такой симметричный сдвиг происходит относительно какой-то благоприятным образом ориентированной по отношению к приложенному напряжению т кристаллографической плоскости, называемой плоскостью двойникования (рис. 4.12), которая до деформации не обязательно была плоскостью симметрии. Областью сдвига является вся сдвинутая часть кристалла. При двойниковании, как видно из рис. 4.12, в области сдвига перемещение большинства атомов происходит на расстояния, меньшие межатомных, при этом в каждом атомном слое атомы сдвигаются на одно и то же расстояние по отношению к атомам нижележащего слоя.  [c.129]

Заметим, что критические скалывающие напряжения, необходимые для начала пластической деформации путем скольжения, обычно меньше, чем критические напряжения для деформации путем двойникования, поэтому пластическая деформация двойни-кованием встречается значительно реже. Например, для Zn критическое напряжение для начала скольжения равно 0,18-10 Па, а для двойникования —29-10 Па. В некоторых материалах деформация может осуществляться обоими способами — скольжени-  [c.132]

Уровень предела выносливости чаще всего связан с определенной степенью упрочнения и повреждаемости приповерхностного слоя и размером нераспространяющихся усталостных микротрещин. Исследования К. Миллера показывают (рис. 43), что при уровне ]щклических напряжений Дат > Да > Да усталостное разрушение нс происходит, поскольку трещина останавливается па порогах, обозначенных соответственно Ьз, и Ь . Однако па уровне амплитуд напряжений Да, который несколько больше, чем предел выносливости, барьеры не столь велики, чтобы остановить трещину, в результате чего происходит разрушение. Для начальной стадии распространения усталостных трегцин барьеры Ь , Ь и Ьз соответствуют возрастающей их прочности. Например, самым низким барьером может быть граница двойникования, средним - граница зерна, а самый высокий барьер связан с перлитной зоной в ферритно-перлитной микроструктуре.  [c.72]

Полюсный механизм Коттрелла — Билби предполагает, что для о. ц. к. решетки в плоскости двойникования (112) находится дислокация АОВС с вектором Бюргер-са 0,5а [111] (рис. 81,а). Под действием внешнего напряжения дислокации АОВС может расщепиться в точке О на ОВС и BDE (см. рис. 81) по реакции  [c.141]

ДИАГРАММЫ а—8 ПРИ БОЛЬШИХ СТЕПЕНЯХ ДЕФОРМАЦИИ. Связь между соседними зернами сохраняется в результате множественного скольжения. Сохранению связи способствует также и двойникование. При взаимодействии зерен могут возникать изгибающие моменты, даже если извне приложено напряжение растяжения или сдвига. Такие моменты снимаются в результате образования полос сброса. Сбросообразование и двойникование приводят к релаксации напряжений, способствующей дальнейшему протеканию пластической деформации. Если такой релаксации недостаточно, то около границ возникают трещины.  [c.236]

Множественное скольжение в г. ц. к. поликристаллах приводит к быстрому образованию барьеров Ломер — Коттрелла, а линейная стадия II и параболическая стадия III наблюдаются сразу же за параболической стадией I. Как и для монокристаллов, напряжение, при котором начинается стадия III, быстро убывает с повышением температуры. На стадии III развито поперечное скольжение, и при больших степенях деформации границы зерен не играют существенной роли, поскольку упрочнение определяется процессами внутри зерна, а связь между зернами сохраняется в результате аккомодационных процессов в областях, непосредственно примыкающих к границам зерен локальное множественное скольжение, сбросообразование, двойникование, проскальзывание по границам зерен и др.  [c.236]

Микроструктурная оценка 8, d и N в опытах дает значения е = 1 4%, несравненно более низкие, чем общая пластическая деформация до разрущения. Таким образом, вклад деформации двойникованием в общий уровень пластичности поликристалла оказывается небольшим, несмотря на то, что, кроме концентрации напряжений в местах нагромождения дислокации на различных препятствиях (например, в местах пересечения полос скольжения), благоприятствующих процессу двойникования, в поликристалле создается дополнительная концентрация напряжений, облегчающая двойникование тем больше, чем больше величина зерна. Снижение температуры и повышение скорости деформации приводят к уменьшению эстафетного скольжения, затрудняя релаксацию напряжений и, следовательно, способствуя развитию двойникования. Как показывают расчеты и эксперимент, вклад двойникования при деформации монокристалла существенно ниже, чем предсказываемый по формулам (85) и (149). Подобно тому, как уменьшение величины зерна приводит к снижению концентрации напряжений и, как следствие этого, не достигаются значительные по величине напряжения старта двойникового источника Од= д.у/6 ( д,у=1,4-10-2 мДж/см2 — энергия дефекта упаковки для железа и ад—2000 МПа), можно утверждать, что в результате раздробления исходного зерна поликристалла на фрагменты , ограниченные каркасом из двойниковых пластин, возникает (В. И. Трефилов с сотр.) своеобразный эффект само-  [c.245]

Имеются и другие механизмы образования зародышевых трещин, детальный анализ которых выполнен В. И. Трефиловым, В. Л. Иденбомом, Т. Екобори и др. Например, часто зарождение трещин наблюдается в месте встречи двойника деформации с каким-либо трудно проницаемым барьером границей зерна или другим двойником (рис. 225, г, д). Двойники распространяются с высокой скоростью и возникающие при столкновении с препятствием напряжения не успевают релаксировать. Особенно благоприятные условия для зарождения трещин создаются при встрече растущего двойника деформации с ранее образовавшимся, для которого было характерно другое направление двойникования (см. рис. 225,(3). В этом случае концентрация напряжений в месте встречи особенно велика. В поликристаллах и осо-  [c.428]

В отличие от монокристаллов механическое двойникование в поликристаллах играет, согласно современным представлениям [22], роль только дополнительного механизма деформации, который не вносит заметного вклада в пластичность материала, однако существенно влияет на протекание скольжения при низких температурах, как бы моделируя скольжение за счет локальных концентраций напряжения. Важно отметить при этом двойственную роль механического двойникования, которое из-за пониженной релаксационной способности материала, связанной с высокими значениями сопротивления движению дислокаций при низких температурах, может вызывать раскрытие хрупких микротрещин и последующее разрушение без заметной пластической дефюрмации (особенно в жестких схемах нагружения с элементами растяжения).  [c.56]

Как показали Коттрелл и Билби [124], для начала работы полюсного механизма двойникования напряжение сдвига в плоскости  [c.58]

При образовании скопления дислокаций и соответствующей концентрации напряжений у вершины скопления представляется весьма вероятным, что пластическая деформация в соседнем зерне начнется в результате работы зернограничных источников [54, 102]. Удаляясь от поверхности зерна, дислокации, эмитированные этими источниками, взаимодействуют с дислокациями сетки Франка и могут создать новые источники типа источников Франка — Рида. Поскольку эти новые источники не заблокированы примесями, они оказываются способными либо к размножению полных дислокаций, либо (при достаточно высоком уровне напряжений сдвига) — к размножению частичных дислокаций, т. е. к образованию двойника, например, по полюсному механизму Коттрелла — Билби или по механизму Шлизви-ка [20] (рнс. 2.17). Развитая в работе [22] модель, в которой двойникование начинается после частичной (за счет скольжения) релаксации концентраторов напряжений, приводит к получению аналогичной уравнению Холла — Петча для скольжения зависимости напряжения начала двойникования от размера зерна  [c.60]



Смотреть страницы где упоминается термин Напряжение двойникования : [c.138]    [c.140]    [c.57]    [c.59]    [c.68]    [c.42]    [c.138]    [c.132]    [c.202]    [c.58]    [c.60]   
Прикладная механика твердого деформируемого тела Том 1 (1975) -- [ c.254 ]



ПОИСК



Двойникование



© 2025 Mash-xxl.info Реклама на сайте