Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Энергия парообразования

Энергия тела, определяемая взаимным положением частиц тела (например, энергия сжатой или растянутой пружины, энергия парообразования и т. д.), называется внутренней потенциальной энергией.  [c.21]

Ai/p — внутренняя энергия парообразования, кал/моль  [c.201]

Вообще температура кипения возрастает с увеличением давления. Поскольку температура кипения и давление возрастают, то плотность пара увеличивается, а плотность жидкой фазы уменьшается до тех пор, пока при определенных температуре и давлении плотность и другие свойства этих двух фаз не станут идентичными. Эти значения температуры и давления определяют критическую точку. По мере приближения к критической точке свойства двух фаз становятся более близкими и энергия, требуемая для превращения вещества из одной фазы в другую, уменьшается. В критической точке скрытая теплота парообразования становится равной нулю. При температуре выше критической невозможно получить более одной фазы при любом давлении.  [c.60]


Весьма важным в теплотехнических расчетах является определение количества теплоты, затрачиваемой на отдельные стадии процесса парообразования и изменения внутренней энергии.  [c.172]

Количество теплоты, необходимое для перевода 1 кг кипящей жидкости в сухой насыщенный пар при постоянном давлении, называют теплотой парообразования и обозначают буквой г. Это количество теплоты расходуется на изменение внутренней энергии, связанное с преодолением сил сцепления d между молекулами жидкости, и и а работу расширения (ф).  [c.173]

Коэффициент пропорциональности г называется удельной теплотой парообразования. Этот коэффициент выражается ъ джоулях на килограмм (Дж/кг). Удельная теплота парообразования показывает, какое количество теплоты необходимо для превращения 1 кг жидкости в пар при постоянной температуре. Теплота парообразования расходуется на увеличение потенциальной энергии взаимо-  [c.97]

Опреснение воды — весьма дорогостоящий процесс. Так, например, один из наиболее распространенных методов опреснения— дистилляция—требует очень большого количества тепловой энергии из-за большой величины удельной теплоты парообразования воды (539 кал г). Легко подсчитать, что если для опреснения воды методом дистилляции применять органическое топливо, например каменный уголь (теплотворная способность 7000 кал/г), то для производства 1 пресной воды нужно сжигать его около 80 кг. Промышленный город среднего размера (несколько десятков тысяч человек) потребляет в сутки примерно 200 ООО воды. Следовательно, для обеспечения его водой надо ежедневно сжигать более 15 000 т угля. Ясно, что это экономически невыгодно. Вместе с тем задача опреснения морской или подземной соленой воды может быть успешно решена при помощи атомной энергии.  [c.409]

Разность внутренних энергий и" — и, затрачиваемая на работу против внутренних сил, называется внутренней теплотой парообразования и обозначается буквой р. Теплота, затрачиваемая на работу против внешних сил, равна  [c.113]

В случае постоянного сечения трубопровода при дросселировании газов наблюдается некоторое увеличение скорости потока за диафрагмой ( 2 > щ), что связано с понижением давления (Рг < Pi)< которое приводит к увеличению удельного объема газа ( 2 > i). В случае дросселирования насыщенных жидкостей увеличение скорости w. обусловлено парообразованием, которое сопутствует этому процессу. Однако в связи с тем, что в процессе дросселирования из.менение скорости рабочего тела до и после диафрагмы незначительно (w., — lwj 0), практически во всех случаях изменением его кинетической энергии можно пренебречь вследствие ее. малости по сравнению с энтальпией потока. Тогда из выражения (13.27) следует, что  [c.20]


Если капель много , а интенсивность волн не очень велика, то тепловой энергии пара за счет его торможения будет недостаточно, чтобы вывести смесь на термодинамическое равновесие (когда температуры фаз равны температуре насыщения) только за счет теплообмена, и поэтому происходит частичная конденсация пара, высвобождающая необходимую для равновесия скрытую теплоту парообразования, и в результате будет М < 1, Л/а. >Л/ао.  [c.348]

Как уже отмечалось, первые два способа не могут точно отразить физические процессы тепломассопереноса и по определению предполагают обязательное влияние массо-обмена на теплообмен. По третьему способу соотношение д = / п справедливо при составлении теплового баланса для поверхности пограничного слоя, соприкасающейся с окружающим воздухом. Если же составлять баланс для поверхности слоя, соприкасающейся с продуктом, то, во-первых, из 1 п необходимо вычесть энтальпию воды так как ее перенос происходит без затраты теплоты и должен быть отражен лишь в материальном балансе [221 во-вторых, нужно вычесть также теплоту переохлаждения (перегрева) пара Ср ( Т Тв), поскольку она связана с обменом энергией в самом пограничном слое. Таким образом, для рассмотрения остается лишь теплота парообразования г, что приближает третий способ распределения теплового потока ко второму, но сухая составляющая не содержит потока массы. Окончательно получаем для поверхности раздела продукт — теплоноситель  [c.26]

Тепловой расчет нагрева выполняется методом энергетического баланса. По известным массам и теплоемкостям пенополистирола, изопентана и воды, а также по известной удельной теплоте парообразования воды и изопентана рассчитывается расход энергии на процесс формовки. Время нагрева выбирается в пределах 1—3 мин в зависимости от размеров изделия.  [c.299]

Большая часть теплоты г расходуется на изменение внутренней энергии и"—и например, при давлении 1,37 МПа (14 кгс/см ) для воды эта часть равна 0,9г. Увеличение внутренней энергии при парообразовании и">и ) связано с увеличением объема (и">о ), расстояния между молекулами при этом увеличиваются и потенциальная энергия взаимодействия и возрастает (см. рис. 4.2,0, зависимость Пп(х), ветвь АВ).  [c.109]

Компрессор 1 сжимает влажный пар хладоагента до давления р по линии 1—2. Затраченная на адиабатное сжатие работа расходуется на повышение внутренней энергии пара. В конце сжатия (точка 2) пар становится сухим насыщенным. Нагнетаемый компрессором пар проходит через охладитель 2, который является в данном случае конденсатором, так как в нем пар хладоагента превращается в жидкость вследствие отдачи теплоты парообразования окружающей среде . Процесс 2—3 протекает при постоянных давлении и температуре. Жидкость в состоянии насыщения направляется в дроссельный (редукционный) вентиль 3, где происходит ее дросселирование без отдачи внешней работы (линия 3—4) с понижением давления от р до р2 и температуры от Т до То,. Жидкость частично испаряется, превращаясь во влажный насыщенный пар, который направляется в испаритель, установленный в камере 4, где находятся охлаждаемые тела, и отбирает у них теплоту. Степень сухости влажного пара при этом возрастает.  [c.223]

Особое место среди теплообменных аппаратов разных типов занимают тепловые трубы. Тепловой трубой называется испарительно-конденсационное устройство, представляющее собой закрытую камеру, внутренняя полость которой выложена слоем капиллярно-пористого материала (фитилем). Один конец тепловой трубы служит зоной подвода, а противоположный — зоной отвода теплоты. За счет подвода теплоты жидкость, насыщающая фитиль, испаряется. Пар под действием возникшей разности давлений перемещается к зоне конденсации и конденсируется, отдавая теплоту парообразования. Конденсат под действием капиллярных сил возвращается по фитилю в испарительную зону. Происходит непрерывный перенос теплоты парообразования от зоны нагрева к зоне охлаждения (конденсации). Тепловые трубы не требуют затрат энергии на перекачку теплоносителя, они работают при малом температурном напоре, поэтому обладают большой эффективной теплопроводностью, превышающей на несколько порядков теплопроводность серебра или меди — наиболее теплопроводных материалов из всех известных. Для тепловых труб используется большое разнообразие теплоносителей в зависимости от интервала рабочих температур.  [c.219]


Удельное количество теплоты, равное разности удельных внутренних энергий (и" — и ) и затрачиваемое на удельную работу против внутренних сил, называют внутренней теплотой парообразования и обозначают буквой р. Удельное количество теплоты, затрачиваемое на работу I" против внешних сил, носит название внешней теплоты парообразования и обозначается буквой т) .  [c.163]

Теплообмен между горячими газами и рабочим телом происходит при конечной разности температур, т. е. необратимо, поэтому +, >0, а потеря работоспособности при парообразовании и коэффициент использования энергии будут равны  [c.447]

Для любой точки Si-диаграммы можно найти величины р, v, Т, i, S и X, значения которых нанесены на соответствующие характеристики. Удельная теплота парообразования определяется разностью г = = г" —Г, а внутренняя удельная энергия — соотношением и = i — pv.  [c.159]

Количество тепла, которое нужно сообщить 1 кг кипящей воды, чтобы она превратилась в сухой насыщенный пар, называют теплотой парообразования и обозначают буквой л Часть этой теплоты, называемая внутренней теплотой парообразования и обозначаемая буквой р, затрачивается на изменение внутренней энергии пара, расходуемой на преодоление внутренних сил сцепления между его молекулами. Другая часть этой теплоты, называемая внешней теплотой парообразования, затрачивается на совершение работы расширения, обусловленной увеличением удельного объема при превраще-пии воды в сухой насыщенный пар. Величина этой работы, учитывая, что процесс парообразования происходит при постоянном давлении, равна p(v"—v ). Отсюда следует, что  [c.104]

Такой ход кривых а = /(р) можно объяснить с молекулярной точки зрения. Действительно, при увеличении давления вследствие повышения температуры насыщения и удельного объема жидкости возрастает кинетическая энергия молекул и, наоборот, ослабевают силы сцепления между ними, т. е. работа выхода, а следовательно, и энергия поверхностного слоя становится меньше. Подтверждением этому служит отрицательный знак производной da/dT (для подавляющего большинства жидкостей da/d7 <0). Таким образом, с ростом давления облегчаются условия зарождения и роста паровых пузырей уменьшается критический радиус зародышей паровой фазы и соответственно растет число действующих центров парообразования.  [c.190]

Испарением называется парообразование, происходящее без подвода тепла при любой температуре и только с поверхности жидкости (например, испарение нефтепродуктов из открытых емкостей или резервуаров). При испарении молекулы жидкости, обладающие большой кинетической энергией, отрываются от поверхности жидкости и вылетают в окружающее пространство. При этом температура жидкости снижается.  [c.54]

В тепловом насосе температура рабочего тела (теплоносителя) повышается посредством затраты механической энергии до такого уровня, при котором теплоноситель способен отдать тепло в отопительную систему. Работа теплового насоса осуществляется следующим образом (рис. 32). В испарителе ИС за счет тепла, воспринятого от окружающей среды (например, от морской воды), происходит. парообразование низкокипящего теплоносителя (например, фреона). Образовавшийся пар адиабатно сжимается в компрессоре вследствие чего температура пара повышается. Затем пар поступает в конденсатор КН, где он превращается в жидкость н отдает тепло в отопительную систему. Затем конденсат теплоносителя направляется в дроссельный вентиль ДР, где происходит расширение п понижение его давления. После этого конденсат вновь поступает в испаритель.  [c.82]

Для возникновения кипения всегда необходим некоторый перегрев жидкости, т. е. превышение температуры жидкости относительно температуры насыщения при заданном давлении р. Этот перегрев, как показывают опыты, зависит от физических свойств жидкости, ее чистоты, давления, а также свойств граничных твердых поверхностей. Чем чище жидкость, тем более высоким оказывается начальный перегрев, необходимый для возникновения кипения. Известны опыты, в которых тщательно очищенные жидкости, лишенные растворенных газов, удавалось перегревать без вскипания на десятки градусов при нормальном давлении. Однако в конце концов такая перегретая жидкость все же вскипает, причем кипение происходит крайне бурно, напоминая взрыв. Теплота перегрева жидкости расходуется на парообразование, жидкость быстро охлаждается до температуры насыщения. Высокий начальный перегрев, необходимый для вскипания чистой жидкости, объясняется затрудненностью самопроизвольного образования внутри жидкости начальных маленьких пузырьков пара (зародышей) из-за значительной энергии взаимного притяжения молекул в жидкости.  [c.110]

Действительно, зачем нужен промежуточный переносчик энергии — водяной пар, благодаря включению которого в цикл по существу и снижается коэффициент полезного действия установки Ведь это его свойства — его аномально большая скрытая теплота парообразования — похищает огромное количество энергии. Между тем раскаленный газ, получающийся при сгорании топлива, обладает всеми необходимыми для работы в турбине свойствами. И отнять у него на вращающихся лопатках энергию можно значительно полнее, чем у водяного пара.  [c.59]

Перегрев воды приводит к усилению парообразования во всей толще воды за счет внутренней энергии н<идкости. Это добавочное парообразование возникает почти мгновенно из-за высокой интенсивности теплообмена между жидкостью и пузырьками пара и вследствие развитой их поверхности. Образовавшиеся из котловой воды пузырьки пара до их подъема вверх и выхода через зеркало испарения в паровое пространство барабана вызывают мгновенное набухание уровня воды в нем. Оно происходит тем интенсивнее, чем больше пара образуется под действием снижения его давления. Скорости изменения уровня воды в барабане котла близки к скоростям изменения давления нара и наблюдаются в течение первых 5—15 сек.  [c.210]


Внутренняя теплота парообразования р расходуется на изменение внутренней потенциальной энергии  [c.61]

Из-за наличия сил притяжения между молекулами жидкость покидают те молекулы, энергия которых превышает средний уровень. Средняя энергия остающихся в жидкости молекул понижается, и для поддержания постоянной температуры должна быть добавлена новая порция энергии. Это внутреняя энергия парообразования А[/о. Над паровой фазой во время парообразования совершается работа, поскольку объем пара увеличивается, если давление Рур поддерживается постоянным. Эта работа равна Рур Vg — У/,). Таким образом  [c.183]

Количество теплоты, затраченное на парообразование 1 кг воды при температуре кипения до сухого насыщенного парг, называется полной теплотой парообразования и обозначается буквой г. Теплота парообразования г вполне определяется давлением или температурой. С возрастанием последних г уменьшается и в критической точке делается равной нулю. Полная теплота парообразования г расходуется на изменение внутренней потенциальной энергии или на работу дисгрегации (разъединения) р и на внешнюю работу расширения p v" — v ) --= ij). Величина р называется внутренней, а г з — внешней теплотой парообразования. Полная теплота паробразования равна  [c.178]

На рис. 14.12,6 показан теоретический цикл в s — 7-диаграмме. Линия 1—2 — адиабатное расширение сухого рабочего иара в соиле эжектора от давления пара в котле р до давления в испарителе / о. Линия 2—4 условно изображает смешение рабочего пара, состояние которого соответствует точке 2, с сухим насыщенным паром из испарителя, состояние которого соответствует точке 4. Состоянию смеси соответствует условная точка 5 при давлении Ро- оПиния 5—5 — сжатие смеси рабочего и холодного иаров при обмене энергией в камере смешения 5 —6 — сжатие смеси в диффузоре до давлетшя конденсации рк 6—7 — конденсация водяных паров в конденсаторе 7—8 — дросселирование части воды в РВ 8—4 — кипение воды в испарителе 7—9 — повышение давления до р за счет работы насоса 9—10 — нагрев воды в котле 10—1 — парообразование в котле. Так как изобар ,i совпадают с левой пограничной кривой, то точки 7 и 9 совпадают. В машине условно мои<1го выделить два цикла прямой /—3—7— 9—10 и обратный холодильный цикл 4—6 —7—8. В действительности процессы прямого и обратного циклов в эжекторе осуществляются одновременно и не могут быть разделены.  [c.139]

В процессе испарения парообразование происходит только на свободной поверхности жидкости. Это двусторонний процесс, в котором наряду с уходо.м части молекул из жидкости происходит и частичное возвращение молекул обратно в жидкость, В случае, если процессы ухода п возвращения молекул взаимно компенсируются, то наступает состояние динамического равновесия, пар над поверхностью становится насыщенным. Процесс испарения жидкости происходит при любой температуре, причем температура жидкости уменьшается, так как с ее открытой поверхности уходят молекулы, обладающие наибольшей энергией. Температура жидкости при испарении с открытой поверхности тем ниже, чем интенсивнее 1 спарение. В холодильной технике это свойство воды широко используют в устройствах для охлаждения воды (в градирнях, брызгальных бассейнах и т. д.),  [c.192]

Для влажного пара при заданной степени сухости х внутреняя энергия (uj, энтальпия (ij, теплота парообразования (г , г)) .), энтропия (Зд.) определяются по следующим очевидным формулам  [c.91]

Известен ряд технически важных газов и жидкостей. В теплотехнических устройствах они используются главным образом в качестве теплоносителей и рабочих тел. Теплоносители служат для переноса теплоты например, в системе теплоснабжения вода получает теплоту в водогрейном котле, перемещается по трубам тепловой сети к потребителю и отдает там теплоту в систему отопления. Рабочими телами являются газы, их внутреннюю энергию увеличивают за счет подвода теплоты работа происходит при расщирении газа. К теплоносителям и рабочим телам предъявляются следующие требования они должны быть дещевыми и доступными, сохранять свои свойства при длительной эксплуатации они не должны быть химически агрессивными по отношению к металлу и токсичными (отравляющими, ядовитыми). Желательно, чтобы они имели большие значения теплоемкости и теплоты парообразования, — так как в этом случае каждый килограмм теплоносителя или рабочего тела используется с большей эффективностью.  [c.120]

В испаритель из конденсатора через редукционный вентиль поступает холодильный агент — пар аммиака небольшой степени сухости. Отнимая тепло от рассола, поступающего из охлаждаемого помещения, аммиак испаряется и в воде сухого насыщенного пара поступает в абсорбер, где поглощается слабонасыщенным водо-аммиачным раствором. Процесс поглощения аммиака раствором сопровождается выделением тепла растворения, которое отводится охлаждающей водой. Получившийся концентрированный раствор аммиака насосом подается в генератор (кипятильник). Расход энергии на насос очень невелик и не может идти в сравнение с расходом энергии на компрессор в рассмотренной в предыдущем параграфе установке. В генераторе за счет подводимого к раствору тепла происходит выпаривание аммиака из раствора (температура кипения аммиака ниже температуры кипения воды, поэтому он испаряется в большей мере, чем вода). Далее аммиак поступает в конденсатор, где переходит в жидкое состояние, отдавая теплоту парообразования воде, имеющей при поступлении в конденсатор температуру окружающей среды. Таким образом, в результате тепло, отнятое в охлаждаемом помещении рассолом и передаваемое аммиаку в испарителе, перешло к охлаждающей воде, имеющей более высокую температуру.  [c.209]

Таким образом, теплота парообразования расходуется на изменение внутренней энергии Р, связанное с преодолением сил межмолекулярного сцепления в жидкости (работа дисгрегации), т. е. на превращение жидкости в пар  [c.35]

Часть р,, удельной теплоты парообразования г расходуется на изменение внутренней удельной энергии, на преодоление сил внутреи-  [c.152]

Первая систематизация обширного экспериментального материала, накопленного при изучении процессов генерации водяного пара, была проведена в книге М. А. Стыриковта Внутрикотловые процессы , изданной в качестве учебного пособия в 1954 г. В дальнейшем М. А. Стыриковичем, О. И. Мартыновой и 3, Л. Мирополь-ским издается учебник Процессы генерация пара на электростанциях (Энергия, 1969), в котором обобщаются материалы, накопленные в последующие годы, и опыт преподавания этой дисциплины в энергетических вузах. Эта книга в настоящее время является единственной в учебной литературе рассматриваемой области. Од-. нако, представляя большую ценность для студентов теплоэнергетических факультетов, она, конечно, далеко не в полной мере пригодна для учащихся вузов, готовящих инженеров другого профиля (например, в области химической технологии, химического аппарато-строения, пищевой промышленности и пр.). Между тем процессы гидродинамики, тепло- и массообмена при парообразовании, рассматриваемые в различных курсах, имеют много общего. Это дает возможность создать учебное пособие для студентов нескольких  [c.3]

Теплота парообразования расходуется на изменение внутренней потенциальной энергии Аи — и"п — и (внутренняя кинетическая энергия при Т = onst не изменяется) и на работу расширения жидкости = р (v" — v ). В p-t -диаграмме она определяется площадью под линией Ь—с.  [c.58]


Стандартные аштальпии образования (ДЯ вр), энергии образования Гиббса (Дб др), теплоты парообразования (АЯцар) адиабатические коэффициенты сжимаемости (Рад) для газов 53, 54)  [c.53]

Но есть другой путь — повышение начальных параметров пара его температуры и давления. Переходя на более высокие параметры, мы как бы повышаем долю тепла, забираемого паром в котле сверх скрытой теплоты парообразования. А ведь это тепло почти полностью мол но лревратить в механическую энергию вращения ротора турбины.  [c.42]

Попытку применить безнасадочный принцип действия предприняло Киев-энерго при разработке контактного экономайзера за котлом № 4 Киевской ТЭЦ-3, При переоборудовании скрубберных золоуловителей в контактные экономайзеры насадка не применена. Водораспределитель из перфорированных труб подает нагреваемую воду в полую камеру. Для улавливания капель воды на выходе из экономайзера предусмотрен жалюзийный каплеуло-витель. Паропроизводительность котла 120 т/ч, расчетный расход воды, нагреваемой в контактном экономайзере, 100—150 т/ч. Под экономайзером расположен декарбоиизатор, продуваемый воздухом. Температура нагреваемой в экономайзере воды от 15—30 до 45—55 °С. Аэродинамическое сопротивление экономайзера во время испытаний не превышало 15 мм вод. ст. Экономайзер испытывался при пониженной нагрузке по воде. Во многих случаях он работал в режиме испарения воды, поэтому эффективность его была либо невелика, либо отрицательна. В тех случаях, когда отношение расхода воды через экономайзер к паропроизводительности котла превышало 1,0—1,5, обеспечивался режим конденсации водяных паров из дымовых газов, н эффективность экономайзера была удовлетворительна к. и. т. в котле повышался (на 5—7 %) и достигал 101,5 % по низшей теплоте сгорания газа против 94,9 % при работе котла без экономайзера. Однако возможности контактного принципа действия в этом экономайзере использованы лишь частично, поскольку газы охлаждались до температуры 55—60 °С и выше, что не позволяло использовать скрытую теплоту парообразования, а в ряде режимов наблюдалось увеличение влагосодержания газов, что представляет опасность дл Г дымовой трубы.  [c.40]


Смотреть страницы где упоминается термин Энергия парообразования : [c.126]    [c.58]    [c.65]    [c.163]    [c.153]    [c.136]    [c.103]    [c.469]    [c.703]    [c.20]   
Свойства газов и жидкостей Издание 3 (1982) -- [ c.183 ]



ПОИСК



Парообразование

Процессы парообразования и перегрева пара на диаграмме и — р. Сухость и влажность пара. Теплота, внутренняя энергия и энтальпия воды и пара



© 2025 Mash-xxl.info Реклама на сайте