Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Аналогия гидродинамическая при кручении

Аналогия гидродинамическая при кручении 192, 196, 198, 200 Анизотропия 29  [c.452]

Гидродинамические аналогии позволяют сделать некоторые качественные выводы о распределении касательных напряжений при кручении призматического бруса. Если, например, в поперечном сечении скручиваемого бруса имеется отверстие — след круглой цилиндрической полости (рис. 7.11), диаметр которого значительно меньше харак-  [c.151]


Таким образом, с помощью гидродинамических аналогий весьма просто можно сделать важные заключения о некоторых особенностях распределения касательных напряжений при кручении.  [c.377]

Качественное представление о концентрации напряжений в детали при кручении составляется на основании гидродинамической аналогии. Контур детали рассматривают как край плоского сосуда, по которому протекает жидкость линия тока жидкости у края сосуда совпадает с траекториями напряжении Более плавный переход с большим радиусом дает  [c.459]

Особенно полезны различные аналоговые методы. Эти методы основаны на том факте, что в некоторых случаях задача теории упругости математически эквивалентна задаче другого раздела физики, в котором требуемые величины могут быть легко измерены. Уже было упомянуто о гидродинамической аналогии, с помощью которой Дж. Лармор определил концентрацию напряжения в скручиваемом валу, вызванную малым круглым отверстием. Очень важная аналогия была развита Л. Прандтлем ). Он показал, что задача кручения эквивалентна определению поверхности прогибов равномерно растянутой и равномерно нагруженной мембраны, имеющей такую же форму, как и поперечное сечение скручиваемого вала. Используя мыльную пленку как мембрану и замеряя оптическим путем максимальный наклон поверхности прогибов, вызванный равномерным давлением газа, можно легко получить максимальное напряжение при кручении. В дальнейшем метод мембранной аналогии был развит Г. Тейлором ) и применен к исследованию напряжений при кручении валов со сложной формой поперечного сечения. Кроме того, таким же образом была изучена концентрация напряжения в круглых валах со шпоночными канавками.  [c.669]

Это замечательное свойство распределения касательных напряжений по тонкостенным замкнутым сечениям при кручении часто называют свойством постоянства потока касательных сил. В основе этого названия лежит гидродинамическая аналогия, согласно которой такое распределение касательных напряжений подобно распределению скоростей в потоке несжимаемой невязкой жидкости, циркулирующей но замкнутой трубке, которая как бы образована внешним и внутренним контурами сечения. В такой трубке из-за несжимаемости жидкости ее поток  [c.146]


ГИДРОДИНАМИЧЕСКИЕ АНАЛОГИИ ПРИ КРУЧЕНИИ 251  [c.251]

Гидродинамические аналогии при кручении.  [c.251]

Решения многих конкретных задач получены при помощи мембранной аналогии Прандтля или гидродинамических аналогий. Решение задач кручения тонкостенных стержней при помощи аналогии Прандтля основано на допущении, что мембрана, натянутая на контур профиля стержня, составленного из длинных и узких полос, и нагруженная равномерно распределенной нагрузкой, провисает в каждой из этих полосок так же, как мембрана, натянутая на бесконечную длинную полосу той же ширины, что и рассматриваемая. При этом влияние закругления и ужесточения за счет соединения между собой отдельных полосок, составляющих данный профиль, учитывают введением в расчетные формулы поправочных коэффициентов, определяемых из опытов (см. стр. 266—267).  [c.269]

А. Феппль и Л. Феппль на основе гидродинамической аналогии и теоремы о циркуляции касательного напряжения при кручении предложили более точную формулу для определения наибольшего напряжения в местах закругления углов в открытых профилях  [c.283]

Круглое продольное отверстие и е бо л ь ш о го размера в поперечном сечении скручиваемого вала (фнг. 174), При решении этой задачи очень удобно пользоваться гидродинамической аналогией, по которой следует, что задача о кручении цилиндрических стержней постоянного сечения математически идентична задаче движения идеальной жидкости, вращающейся с постоянной угловой скоростью внутри цилиндрической оболочки, имеющей то же сечение, что и скручиваемый стержень.  [c.107]

Аналогия Гринхилла основана на том, что функция Напряжений при кручении бруса математически тождественна с функцией тока при движении идеальной несжимаемой жидкости в трубе того же сечения, что и поперечное сечение скручиваемого бруса. Это означает, что распределение скоростей гидродинамической задачи математически тождественно с распределением касательных напряжений при кручении.  [c.151]

Приближенное решение для ламинарного течения в призматических трубах произвольного сечения с достаточной для практических расчетов точностью может быть получено на основании применения рассматриваемой в теории упругости так называемой гидродинамической аналогии при кручении. Эта аналогия впервые была установлена Буссинеском, показавшим, что дифференциальные уравнения и условия на контуре, служащие для определения функции напряжений ф при кручении призматических стержней, тождественны с уравнениями для определения скоростей различных слоев вязкой жидкости при ее движении по трубе того же поперечного сечения, что и скручиваемый [стержень.  [c.152]

Распределение касательных нанряя епий при кручении в стери -иях замкнутого и пеламкнутого сечени принципиально различно. Ото понятно иу гидродинамической аналогии, если представить ка-сательпые напряжения как скорости циркулирующей внутри сечения жидкости. В замкнутом тонкостенном сечении касательные  [c.211]

Рассмотренная аналогия не является единственной. Для задачи о кручении бруса могут быть предложены и другие аналогии, связанные, например, с гидродинамическими законами течений. В теории упругости при решении нетсоторых задач используются также эле) тро-статические аналогии, где законы распределения напряясеннй в упругом теле устанавливаются путем замера напряженности электростатического поля в различных точках исследуемой области модели.  [c.97]

Эта аналогия имеет наиболее простое и практически наиболее важное применение при приближенном решении задачи о кручении сечения в форме вытянутого прямоугольника. Для этого случая мы в предыдущем параграфе уже вывели приближенные формулы совсем другим путем но при этом мы пришли к заключению, что эти формулы нельзя считать достаточно точными. Выражения для функции напряжений, примененные выше, для предельного случая узкого прямоугольника подходят довольно плохо, и их следовало бы улучшить путем виедения большего числа параметров, что, однако, привело бы к длинным вычислениям. Зато как раз в предельном случае узкого прямоугольника для получения достаточно близкого к точному приближенного решения особенно пригодна гидродинамическая аналогия.  [c.67]


При исследовании этого вопроса весьма полезно применить гидродцнамическую аналогию ). Задача кручения стержней постоянного поперечного сечения математически идентична с задачей даижения со-вершенной жидкости, пе ремещ9ющейся с постоянной угловой скоростью внутри цилиндрической оболочки, имеющей, такое же поперечное сечение, как и стержень. Окружная скорость циркулирующей Рис. 185. жидкости в какой лябо точке может быть принята за изображение касательного напряжения в той же точке поперечного сечения скручиваемого стержня. Влияние малого отверстия й валу кругового поперечного сечения подобно тому. Какое окажет сплошной цилиндр тех же размеров, введённый в поток гидродинамической модели. Такой цилиндр значительно измеАяет ск ости жидкости в непосредственной близости от себя. Скорости в передних  [c.258]


Смотреть страницы где упоминается термин Аналогия гидродинамическая при кручении : [c.189]    [c.269]    [c.122]   
Сопротивление материалов (1962) -- [ c.192 , c.196 , c.198 , c.200 ]



ПОИСК



Аналог

Аналог*» гидродинамические

Аналогия

Аналогия гидродинамическая

Аналогия гидродинамические — задачи кручении, 33, 328 — задачи о кручении с задачей о натянутой мембране

Аналогия для кручения

Гидродинамические аналогии в теории кручения

Да гидродинамическое



© 2025 Mash-xxl.info Реклама на сайте