Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Напряжение нормативное

Определить высоту прямоугольного поперечного сечения h балки (см. рисунок) из условия прочности по нормальным напряжениям. Нормативное значение нагрузки q = 10 кН/м, коэффициент перегрузки п = 1,2, коэффициент условий работы т = 0,8, расчетное сопротивление материала балки изгибу R = 20 МПа, а = 2 м.  [c.127]

Паропроводы, находящиеся в эксплуатации с 1950 г., рассчитывались на прочность по нормам (уравнения расчета, допускаемые напряжения, нормативные добавки на минусовые допуски и износ металла), ко-  [c.258]


Коэффициент запаса устойчивости Коэффициент запаса прочности по нормальным напряжениям. . . Коэффициент запаса прочности по касательным напряжениям. . . Нормативный (требуемый) запас  [c.5]

В качестве исходной величины для определения предельных напряжений выбирают одну из нормативных механических характеристик материала для пластичных материалов при статическом нагружении — предел текучести а, для хрупких материалов при статическом нагружении — временное сопротивление 0 для любых материалов при циклическом изменении нагрузки — предел выносливости (усталости) (см. 2 гл. XV).  [c.139]

Величина коэффициента устанавливается на основе теории упругости аналитическими и экспериментальными методами. Для некоторых концентраторов напряжений применительно к конструктивным элементам сосудов и аппаратов значения можно найти по нормативным и справочным материалам.  [c.373]

Разделив предельное напряжение на нормативный коэффициент запаса, получим допускаемое напряжение [а  [c.170]

Проектный расчет. При этом расчете известны нагрузки, действующие на брус, заданы или выбраны материал, допускаемое напряжение [а] или нормативный запас прочности [5]. Размеры поперечного сечения бруса, обеспечивающие требуемую прочность, определяем следующим образом полагая а = [а], из уравнения (2.23) получаем расчетную формулу  [c.171]

По формуле (2.82) определяем максимальные нормативные напряжения в сжатой зоне опасного сечения со стороны участка П  [c.219]

Как известно, допускаемое напряжение материала находится как отношение предельного напряжения на нормативный коэффициент запаса прочности [п], т.е.  [c.127]

Как видим, запас прочности для точки 2 меньше нормативного, поэтому напряженное состояние является недопустимым.  [c.139]

Коэффициент [пг отражает влияние однородности материала (в частности, для отливок он выше, чем для поковок) чувствительности его к недостаткам механической обработки отклонения механических характеристик от их нормативных значений в результате нарушения технологии изготовления детали. Для пластичных материалов при статическом нагружении детали [ 21=1 >2—2,2 (меньшие значения для более пластичных материалов) при том же характере нагружения, но хрупком материале [п21=2—6 (большие значения при весьма хрупких неоднородных материалах). При напряжениях, переменных во времени, принимают [п21=1,3—3,0 (большие значения для менее пластичных и однородных материалов).  [c.328]


Раскос фермы из двух равнобоких уголков из стали марки СтЗ прикреплен к фасонному листу заклепками (см. рисунок). Определить число заклепок из условия прочности их на срез и смятие, если нормативное усилие в раскосе JV = 900 кН, и нормальное напряжение в поперечном сечении раскоса коэффициент перегрузки = 1,1, коэффициент условий работы заклепочного соединения т = 0,9.  [c.67]

Из условия прочности по нормальным напряжениям найти нормативную нагрузку Р", действующую на стальную балку коробчатого поперечного сечения (см. рисунок), если = 1,1, /п =  [c.128]

Шарнирно-опертая по концам чугунная балка пролетом 2 м, имеющая П-об-разное поперечное сечение (см. рисунок), нагружена равномерно распределенной нагрузкой q. Определить интенсивность нормативной нагрузки q" из условия, чтобы касательные напряжения в поперечном сечени балки не превышали расчетного сопротивления на срез / ср = 35 МПа. Коэффициент перегрузки п = 1,1. Размеры поперечного сечения балки даны в миллиметрах.  [c.130]

Проанализировать полученные результаты решения по каждому из вариантов конструкций и выбрать оптимальный, который будет принят в качестве рабочего варианта при проектировании. При выполнении этого анализа нужно будет обратить особое внимание на соответствие полученных величин и напряжений их допускаемым значениям по нормативным документам, учесть экономические факторы, факторы морального характера и др.  [c.80]

Приведенное неравенство является условием прочности. В большинстве случаев удобнее вести расчет на прочность, пользуясь понятием о допускаемом напряжении, которое равно отношению предельного напряжения к нормативному коэффициенту запаса прочности  [c.10]

Незначительное превышение рабочего напряжения над допускаемым неопасно для прочности конструкции, так как нормативный коэффициент запаса имеет для пластичного материала даже при наиболее благоприятных условиях работы и высокой точности расчета значение порядка 1,3—1,5, а для хрупкого материала не ниже 3—4. Для пластичного материала значение коэффициента запаса указано по отношению к пределу текучести, а для хрупкого — к пределу прочности.  [c.10]

Следует заметить, что нормативные коэффициенты запаса устойчивости для стальных стержней значительно ниже, чем принятые в машиностроении, поэтому применение этого метода расчета к элементам машиностроительных конструкций может иметь место лишь при условии либо составления специальных таблиц коэффициентов снижения допускаемых напряжений, либо (в случае использования таблиц, составленных для строительных конструкций) расчета по пониженным основным допускаемым напряжениям. Во всяком случае расчетные данные должны быть выбраны таким образом, чтобы коэффициенты запаса устойчивости получались соответствующими принятым в данной отрасли машиностроения.  [c.245]

В тех случаях когда заданным является основное допускаемое напряжение (а не требуемый коэффициент запаса устойчивости), расчет следует выполнять по коэффициентам продольного изгиба. Работа стойки с коэффициентом запаса устойчивости не ниже нормативного будет обеспечена при соблюдении условия  [c.250]

Условия прочности в форме (2.31) или (2.35) характерны для машиностроения. В строительстве отказываются от понятий допускаемого напряжения и нормативного коэффициента запаса. Условие прочности в этом случае записывают в следующем виде  [c.72]

Экспериментальный анализ напряженного состояния гибов показал, что распределение напряжений по сечению гиба резко отличается от распределения напряжений по сечению прямой трубы (рис. 9.2) [19J. Наибольшие растягивающие напряжения в гибах наблюдаются на внутренней поверхности в области нейтральных волокон металла и на наружной в области растянутых волокон. С увеличением отклонений формы поперечного сечения гибов от круглой напряжения возрастают. При этом возрастание напряжений связано не только с некруглостью формы трубы (с овальностью), но и с местным увеличением радиуса кривизны (уплощением). Местный радиус кривизны гиба учесть затруднительно, однако разработан целый ряд методов, позволяющих оценивать местный радиус кривизны и, как следствие этого, локальные напряжения. Нормативно-технологической документацией такие измерения не предусматриваются и пока применяются только в исследовательских работах.  [c.247]


Под физической величиной напора следует понимать высоту, на которую жидкость или газ способны подняться под действием статического давления (насосом). Напор - линейная величина, выражаемая в сдиница.ч длины (м), но не давления. В паска. ях обозначают механическое напряжение, нормативные и расчетные сопро 11В,1ения изгиб, растяжению, сжагию, смятию, срезу и сцепление.  [c.9]

Анализ включает оценку фактической нагруженности основных элементов аппарата в соответствии с требованиями НТД фактической геометрии и толщины стенок, концентраторов напряжений и дефектов результатов исследования напряженно-деформированного состояния (НДС), полученных при функциональной диагностике и экспертном обследовании установление механизмов образования и роста обнаруженных дефектов и повреждений, возможных отказов вследствие их развития оценку параметров технического состояния аппаратуры (их соответствие требованиям нормативно-технической и проектной документации, а по наличию отклонений от требований НТД установле)1ия определяющих параметров технического состояния) заключения о необходимости дальнейших уточненных расчетов и экспериментальных исследований напряженнодеформационного состояния, характеристик материалов и оценки остаточного ресурса в случае отсутствия повреждений, влияющих на параметры технического состояния аппаратуры.  [c.167]

На первом этапе производится расчет на прочность по существующим нормативным материалам (ГОСТы, СНИ-Пы, РД и др.) с использованием фактических механических свойств, найденных в результате испытаний образцов, вырезанных из элементов оборудования, или косвенными методами (например, по изменению твердости или химическому составу и др.). Далее производится оценка остаточного ресурса по фактическим или априорным (если недостаточно диагностической информации) данным о дефектности, например, по разрешающей способности методов и средств неразрушающего контроля с учетом предыстории нагружения, а также характеристикам допускаемых технологических и конструктивных концентраторов напряжений. При такой оценке ресурса необходимо более полно учитывать реальные условия эксплуатации и использовать наиболее жесткие критерии разрушения, дающие консерватив-  [c.362]

Исследования показали, что по химическому составу металл отливки корпуса задвижки соответствовал стали А-352 1СВ по АЗТМ и в зоне разрушения находился в охрупченном состоянии ударная вязкость КСУ 4д при пониженной температуре составляла 12 Дж/см , относительное удлинение 8 — 23,8%. Металл имел ферритно-перлитную структуру с крупными равноосными зернами и включениями карбидов внутри зерен феррита. Охрупчивание металла отливки в зоне разрушения было вызвано наличием усадочных межкристаллитных несплошностей и проявлением водородной хрупкости. По значениям прочности, твердости и относительного сужения металл отвечал требованиям нормативных документов к отливкам, предназначенным для эксплуатации в средах с высоким содержанием сероводорода. Разрушение стенки корпуса задвижки произошло в результате быстрого развития трещин, образовавшихся в металле под воздействием напряжений, превышающих предел текучести, в зоне расположения усадочных несплошностей. Наличие высоких напряжений в металле в момент, предшествовавший разрушению, подтверждалось тем, что в зоне зарождения и нестабильного роста трещин преобладал вязкий характер разрушения. Характер излома корпуса задвижки в зонах зарождения и докритического роста трещины смешанный, а в зоне лавинообразного разрушения — хрупкий с шевронным узором. Охрупчивание металла, вызванное его пониженной ударной вязкостью, способствовало лавинообразному развитию разрушения. На гболее вероятной причиной разрушения задвижки явилось, по-видимому, размораживание ее корпуса.  [c.52]

Дефекты основного металла и сварных соединений приводят к образованию некогерентных границ зерен, коррозионно нестойких пленок, создают концентрацию макро- и микронапряжений, повышают термодинамическую неустойчивость дефектных участков поверхности и интенсифицируют их наво-дороживание и электрохимическое растворение. Поэтому для повышения надежности оборудования и коммуникаций, контактирующих с сероводородсодержащими средами, наряду с тщательным входным контролем соответствия материалов конструкций техническим условиям на их поставку и неразрушающим контролем монтажных сварных соединений, эффективными являются предпусковые гидроиспытания металлоконструкций давлением, создающим напряжения до 95% от минимального нормативного значения предела текучести металла [33, 34]. В ходе этих испытаний разрушаются участки основного металла и сварных соединений, содержащие потенциально опасные дефекты. Вокруг оставшихся неопасных дефектов образуются зоны остаточного сжатия, повышаюшего коррозионную стойкость сварных соединений. Кроме того, после гидравлических испытаний в 2-3 раза снижаются максимальные остаточные напряжения в зоне сварных соединений труб за счет пластического удлинения растянутых областей металла. Одновременно снижаются наиболее высокие монтажные напряжения в трубопроводах. Там, где по техническим причинам проведение гидроиспытаний не представляется возможным, для выявления недопустимых дефектов необходимо применять 100%-ный радиографический контроль сварных соединений и его 100%-ное дублирование ультразвуковым методом [25, 35].  [c.67]

В случае, когда при расчете трубопроводов, контактирующих с наводороживающими средами и содержащих внутренние и поверхностные нетрещиноподобные дефекты, используют модифицированные формулы стандарта АМ81/А5МЕ В 310, за напряжение текучести принимают нормативный предел теку-  [c.142]


Оно определяется как отношение предельного напряжения предпред) нормативный коэффициент запаса прочности [п]  [c.33]

Вал испытьгвает совместное действие изгиба и кручения. Достаточна ли прочность данного вала, если запасы прочности по нормальным и касательным напряжениям соответственно равны п = , 9 и = а нормативный коэффициент запаса усталостной прочности составляет [и] = 2  [c.224]

Сосуды и аппараты высокого давления (котлы, сосуды, трубопроводы и т п.), как правило, относят к класс> толстостенных оболочковых конструкций, для которых не выполняются условия и допущения, принимаемые при расчетах на прочность с использованием теории мембранных оболочек. В связи с этим при разработке нормативных расчетов на прочность рассматриваемых конструкций использовали данные ис-пьгганий моделей и натуральных образцов /6, 48/. В результате были по-л чены эмпирические или полуэмпирические зависимости, которые и бьши положены в основу расчетов на прочность /49 — 51/ Например, в нормах расчета на прочность котлов и трубопроводов, регламентированных ОСТ 108.031.08-85, приводятся требования к выбору расчетного давления, нормативы допускаемых напряжений на расчетные сроки службы констру кций. Сосуды, работающие под давлением и находящиеся в помещениях (не относятся к классу котлов или трубопроводов), рассчитываются согласно ГОСТ 14249-80.  [c.80]

Наличие сварных соединений в сосудах и трубопроводах при расчетах на прочность учитывается введением в нормативные расчеты коэффициентов прочности сварных соединений /52/. Такой подход учета сварных соединений положен в основу расчетов почти всех отраслевых нормативных док ментов при оценке прочности оболочковых конструкций и он не отражает неоднородность механических свойств различных зон соединений, особенности их напряженного состояния и возможные механизмы их разрутиения при эксплуатации.  [c.80]

В связи с недостатками существующих нормативных расчетов на прочность оболочковых конструкций к настоящему времени проведены многочисленные исследования, направленные на изучение механического поведения конструкций в процессе их нагружения и разрушения /53, 57/. В результате было предложено большое количество различных вариантов расчетов, учитьшающих те или иные особенности напряженного состояния и пластического деформирования оболочек давления.  [c.80]

Участок ВС диаграммы соответствует явлению текучести, когда образец деформируется практически при неизменном усилии. Этот участок диаграммы принято называть плош адкой текучести. Соответствующее напряжение называется пределом текучести и обозначается (индекс у от yield (англ.) — текучесть). Например, для горячекатаной прутковой (диаметром до 80 мм) стали 45 без термической обработки нормативное значение Стр должно быть не менее 360 МПа.  [c.50]

Несколько удлинившись при постоянном значении усилия образец снова демонстрирует способность упрочняться, когда усилие F растет с увеличением деформации А/. На этой стадии деформирования образца график зависимости F = F (At) представляет собой гладкую кривую, см. рис. 2.3, а. Рано или поздно сила F достигнет своего наибольшего значения, см. точку D на диаграмме. Соответствующее максимальное напряжение при испытании обозначается о (индекс и от ultimate (англ.) — предельный) и называется пределом прочности или временным сопротивлением. Например, для упомянутой стали 45 (без термической обработки, в прутках диаметром до 80 мм) нормативное значение Стц должно быть не менее 610 МПа.  [c.50]


Смотреть страницы где упоминается термин Напряжение нормативное : [c.388]    [c.122]    [c.113]    [c.48]    [c.24]    [c.31]    [c.40]    [c.140]    [c.33]    [c.37]    [c.8]    [c.200]    [c.69]    [c.70]   
Основы конструирования аппаратов и машин нефтеперерабатывающих заводов Издание 2 (1978) -- [ c.34 ]



ПОИСК



В нормативное



© 2025 Mash-xxl.info Реклама на сайте