Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Галина перемещений

В последующие годы развитие методов, основанных на использовании общих уравнений теории упругости и, в частности, функций Папковича — Нейбера, позволило свести многие общие смешанные задачи упругого равновесия полупространства к некоторым классам смешанных задач теории потенциала. При этом в качестве основной из таких задач целесообразно выделить тот случай, когда на всей границе полупространства заданы касательные напряжения, в некоторой конечной области 6" граничной плоскости 2 = 0 известно нормальное перемещение щ = f (х, у), а вне 6 (в области 3 ) задано нормальное напряжение сг = о (х, у). Так, для контактной задачи без трения и пригрузок имеем о = О, а функция / определяется формой основания штампа. Существенно, что смешанные задачи указанного класса в конечном счете могут быть сведены к нахождению одной гармонической функции, заданной в /5", причем в области 8 известна ее нормальная производная. Советскими учеными были разработаны эффективные методы подхода к подобным задачам теории потенциала, позволившие, в частности, дать точные решения некоторых контактных и сходных смешанных задач. Основными из этих методов являются следующие применение сфероидальных и эллипсоидальных координат (А. И. Лурье) построение и использование функции Грина (Л. А. Галин М. Я. Леонов, 1953) метод интегральных уравнений (И. Я. Штаерман В. И. Моссаковский, 1953) использование тороидальных координат и интегральных преобразований (Я. С. Уфлянд, 1956, 1967) метод комплексных потенциалов (Н. А. Ростовцев, 1953, 1957). Мы здесь специально не выделяем метод парных интегральных уравнений, успешно развитый Я. Н. Снеддоном ), поскольку его эффективность существенно проявляется при решении более сложных смешанных задач, о которых речь пойдет ниже.  [c.34]


При формулировке задач механики контактного взаимодействия трение (сопротивление относительному перемещению контактирующих точек) учитывается феноменологически заданием некоторого соотношения между нормальными р и тангенциальными г напряжениями, действующими в зоне контакта. Наиболее часто используется закон трения Амонтона вида г = р. Методы исследования плоских контактных задач с трением, основанные на сведении их к решению смешанных задач теории функций комплексного переменного, разработаны Н.И. Мусхели-швили [107], Л.А. Галиным [23], А.И. Каландия [74]. Эти методы нашли применение при решении задач для тел с различной макроформой. Контактные задачи с законом трения в форме Амонтона в пространственной постановке рассмотрены в работах [29, 86, 87, 106] и т.д.  [c.134]

Как показано Л.А. Галиным [23], касательные напряжения Tze Ь, t) в осесимметричной контактной задаче с силами трения не оказывают влияния на распределение контактных давлений p r,t). Контактные давления связаны с упругими перемещениями Uz r) следующим соотношением, справедливым для контактной задачи при отсутствии сил трения  [c.376]

Большое значение в теории упругости имеют контактные задачи к ним 255 относится, например, задача о контакте рельса и колеса. Наиболее важный шаг в этой теории после появления классических работ Г. Герца был сделан с опубликованием работы Н. М. Беляева где определено распределение напряжений в случае эллиптической плош,адки соприкасания. Обобш,ение исследований Герца на случай плотного прилегания соприкасающихся тел было дано И. Я. Штаерманом Л. А. Галин учел в контактных задачах наличие трения и сцепления и дал двухстороннюю оценку для силы, вызываюш ей заданные поступательные перемещения плоского штампа произвольной формы . А. И. Лурье рассмотрел штамп при внецентренном нагружении . Отметим, что монография Лурье содержит очерки развития отдельных разделов пространственной задачи теории упругости.  [c.255]

Задача о двухосном растяжении толстой пластины с круговым отверстием (задача Галина Ивлева) рассматривалась в работах [1-7]. Точное решение задачи о распределении напряжений в окрестности кругового отверстия плоскодеформированно-го идеально пластического тела, к контуру которого приложены постоянные нормальные усилия, а напряжения на бесконечности представляют собой полиномиальные функции координат, дано Л.А. Галиным [2].Решение удалось найти благодаря бигармоничности функции напряжений в пластической области. Перемещения в пластической области для этой задачи были исследованы Д.Д. Ивлевым [5]. В работах [3-4] Д.Д. Ивлев методом малого параметра решил ряд плоских упругопластических задач для идеально пластического тела с круговым или близким к круговому отверстием. С использованием метода возмущений, предложенного Д.Д. Ивлевым в [1, 6], были решены задачи о плоской деформации, при этом поведение материала в пластической зоне описывалось соотношениями Ишлинского-Прагера  [c.167]


Л. с. Лейбензону (1934) принадлежит постановка задачи о перемещении границы раздела между двумя жидкостями, движение каждой из которых в своей области описывается уравнением Лапласа (на границе задаются условия равенства потоков и давлений). Одномерные задачи о движении границы раздела рассматривались В. Н. Щелкачевым (1944) И. А. Чарным (1948) был предложен приближенный способ решения небдномерной задачи, основанной на введении жестких трубок тока. В точной постановке задача вытеснения при нулевой вязкости одной из жидкостей рассматри-залась П. Я. Полубариновой-Кочиной (1945, 1949), Л. А. Галиным (1945,  [c.621]

Л. А. Галиным [84] решена также задача о вдавливании в анизотропную полуплоскость штампов, жестко с ней связанных (граничные условия второго типа). Здесь производные перемещений и(х) и и(х) под штампом выражаются уже через обе функции w и w , для которых и составляется система краевых задач Римана — Гильберта. Интересным приемом Л. А. Галин вводит новые функции, являющиеся линейными комбинациями w, и w , и для них получает независимые друг от друга задачи линейного сопряжения с кусочно-постоянными коэффициентами.  [c.156]

Отметим, две работы, которые содержат результаты исследований колебаний цилиндрических оболочек на основе уравнений, полученных в нелинейной постановке. В первой из них В. И. Борисенко и А. И. Клокова [3.18] (1966) исследуют численно на основе нелинейных волновых уравнений М. П. Галина [3.29] поперечные перемещения в щарнирно опертой цилиндрической оболочке при различных скоростях продольно ударяющего тела. Получена картина поперечных отклонений до второго отражения. Показано, что максимумы в разные моменты времени локализуются вблизи одного или другого торца. Во второй А. Лахе и Л. Поверус [3.50]  [c.224]


Смотреть страницы где упоминается термин Галина перемещений : [c.183]    [c.197]    [c.178]    [c.26]    [c.246]    [c.183]    [c.188]    [c.205]    [c.594]    [c.188]    [c.270]    [c.234]   
Линейная механика разрушения Издание 2 (2004) -- [ c.0 ]



ПОИСК



Галин

Галинов

Об определении перемещений в задаче Л. А. Галина



© 2025 Mash-xxl.info Реклама на сайте