Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Компоненты вектора в цилиндрической и сферической системах

Рис. 1.2. Компоненты вектора плотности теплового потока в прямоугольной (а), цилиндрической (б) и сферической (в) системах координат Рис. 1.2. <a href="/info/459">Компоненты вектора</a> <a href="/info/29212">плотности теплового потока</a> в прямоугольной (а), цилиндрической (б) и сферической (в) системах координат

В задачах установившейся дифракции упругих волн точные решения получают только в круговой цилиндрической и сферической системах координат (см. 1 настоящей главы). Этим исчерпываются возможности метода разделения переменных в его классической формулировке применительно к задачам дифракции для тел, ограниченных цилиндрическими поверхностями. Для тел, ограниченных достаточно гладкими цилиндрическими поверхностями, в предыдущем параграфе решение задачи дифракции сведено к решению бесконечных алгебраических уравнений. Большинство числовых результатов [59—62] получено с помощью приближенного метода возмущения формы границы , предложенного в работе [31]. Заметим, что метод применяется для приближенного вычисления компонентов тензоров, векторов и скаляров различной физической природы в криволинейной цилиндрической системе координат. Сущность метода состоит в получении последовательности краевых задач в цилиндрической системе координат, причем в каждом приближении решаются в круговых координатах одинаковые однородные уравнения, а поправки входят в краевые части граничных условий. Тем самым исключается необходимость построения частных решений, что далеко не всегда удается реализовать.  [c.58]

Задача 14. Выписать закон преобразования ковариантных и контравариантных компонент векторов при преобразовании прямоугольной системы координат в сферическую и цилиндрическую  [c.105]

Одномерным называется движение, при котором все характеристики среды зависят только от расстояния х до некоторой плоскости (движение с плоскими волнами), или только от расстояния х до некоторой прямой—оси симметрии (движение с цилиндрическими волнами), или только от расстояния х до некоторой точки — центра симметрии (движение со сферическими волнами) и от времени, если движение неустановившееся. В одномерных движениях со сферическими волнами вектор скорости имеет в соответствующей сферической системе координат лишь одну отличную от нуля компоненту — радиальную. В одномерных движениях с цилиндрическими и плоскими волнами отличными от нуля могут быть все три компоненты вектора скорости в соответствующих цилиндрической и декартовой прямоугольной системах координат. Оставляя вывод уравнений для общего случая на конец параграфа, будем считать далее не равной нулю лишь одну составляющую скорости — вдоль той координаты, вдоль которой меняются характеристики среды.  [c.149]


Компоненты вектора ускорения в цилиндрической и сферической системах, физические 181  [c.488]

Пусть х представляют систему ортогональных декартовых координат в евклидовом трехмерном пространстве, а — любую другую систему ортогональных прямолинейных или криволинейных координат (например, цилиндрических или сферических) в том же самом пространстве. Вектор х, имеющий декартовы компоненты х , называется радиусом-вектором произвольной точки Р (х1, х , х ) в декартовой системе. Квадрат дифференциала расстояния между близкими точками Р (х) и (х + йх) дается формулой  [c.25]

Найти шр ешге физических компонент ускорения через физические компоненты вектора скорости в цилиндрической и сферической системах коордаат,  [c.55]

Векторы и полиадики часто удобно выражать через их компоненты в некоторой системе криволинейных координат q , например в декартовых координатах х, у, z, сферических координатах г, 0, ф, в цилиндрических координатах р, ф, z. В этой книге используются только ортогональные криволинейные координаты, а приведенные выше системы являются примерами систем  [c.599]


Смотреть страницы где упоминается термин Компоненты вектора в цилиндрической и сферической системах : [c.11]    [c.55]    [c.303]   
Механика сплошной среды Т.1 (1970) -- [ c.181 ]



ПОИСК



Вектор сферический

Компонента вектора

Компоненты вектора

Компоненты вектора системе

Компоненты вектора ускорения в цилиндрической и сферической системах

Компоненты вектора ускорения в цилиндрической и сферической системах смысл

Компоненты вектора ускорения в цилиндрической и сферической системах физические

Компоненты системы

Система векторов

Цилиндрическая вектора



© 2025 Mash-xxl.info Реклама на сайте