Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Переноса уравнение строгий анализ

При обсуждении формализма функций памяти мы отметили, что в рамках теории линейной реакции уравнения (5.3.16) и (5.3.18) являются точными и, кроме того, они справедливы для произвольного набора базисных динамических переменных. Мы теперь применим эти уравнения к анализу линейных кинетических и гидродинамических процессов. Хотя по своей сути формализм функций памяти предназначен лишь для исследования состояний, которые близки к тепловому равновесию, в этой области он имеет преимущества перед стандартной кинетической теорией и гидродинамикой. Во-первых, многие аспекты теории переноса удается исследовать на строгом уровне, в отличие от сильно неравновесных ситуаций, где приходится использовать разложения по малой плотности (в кинетической теории) или по градиентам (в гидродинамике). Во-вторых, функции памяти, через которые выражаются линеаризованные интегралы столкновений и коэффициенты переноса, можно, в принципе, вычислить методами равновесной статистической механики.  [c.386]


Обратим внимание на важную особенность системы (4.17) в нее не входят константы упругости и и. Следовательно, при заданных на поверхности пластинки нагрузках р , ру (4.4) эти уравнения могут быть решены и дадут напряжения, не зависящие от упругих свойств изотропного линейно-упругого материала. Это положение обычно называют теоремой Леви. Она служит теоретическим основанием, позволяющим напряжения, найденные на моделях, изготовленных из какого-либо материала, переносить на геометрически подобные и аналогично загруженные детали конструкций, выполненные из другого материала. Например, в методе фотоупругости используются прозрачные модели, а результаты экспериментальных исследований переносят на стальные, бетонные и т. п. элементы конструкций. Подчеркнем, что строго это положение справедливо только для элементов с заданной поверхностной нагрузкой (а не перемещениями) и, как показывает более подробный анализ, только для односвязных тел, т. е. тел без отверстий. В телах с отверстиями для применимости теоремы Леви надо, чтобы выполнялось дополнительное условие, а именно на каждом из замкнутых контуров тела и отверстий главные векторы и момент поверхностной нагрузки должны быть равны нулю.  [c.77]

Последовательное рассмотрение процессов упругого деформирования и теплопроводности в их взаимосвязи возможно только на основе термодинамических соображений. Томсон (1855) впервые применил основные законы термодинамики для изучения свойств упругого тела. Ряд исследователей [Л. Д. Ландау и Е. М. Лифшиц (1953) и др.] с помощью методов классической термодинамики получили связанные уравнения термоупругости. Однако в рамках классической термодинамики строгий анализ справедлив лишь для изотермического и адиабатического обратимых процессов деформирования. Реальный процесс деформирования, неразрывно связанный с необратимым процессом теплопроводности, является в общем случае также необратимым. Термодинамика необратимых процессов, разработанная в последние годы, позволила более строго поставить задачу о необратимом процессе деформирования и дать единую трактовку механических и тепловых процессов, нашедшую отражение в работах Био (1956), Чедвика (1960), Боли и Уэйнера (1960) и др. В связи с этим более четко определилась теория термоупругости, обобщающая классическую теорию упругости и теорию теплопроводности. Она охватывает следующие явления перенос тепла теплопроводностью в теле при стационарном и нестационарном теплообмене между ним и внешней средой термоупругие напряжения, вызванные градиентами температуры динамические эффекты при резко нестационарных процессах нагрева и, в частности, термоупругие колебания тонкостенных конструкций при тепловом ударе термомеханические эффекты, обусловленные взаимодействием полей де( юрмации и температуры.  [c.6]


Теоретический анализ взаимосвязанных физико-химических, динамических и радиационных процессов и явлений в средней и верхней атмосфере представляет чрезвычайно сложную задачу. Наиболее полное и строгое исследование подобной среды может быть проведено в рамках кинетической теории многокомпонентных смесей многоатомных ионизованных газов, исходя из системы обобщенных интегро-дифференциальных уравнений Больцмана для функций распределения частиц каждого сорта смеси (с правыми частями, содержащими интегралы столкновений и интегралы реакций), дополненной уравнением переноса радиации и уравнениями Максвелла для электромагнитного поля. Такой подход развит, в частности, в монографии авторов Маров, Колесниченко, 1987), где для решения системы газокинетических уравнений реагирующей смеси применен обобщенный метод Чепмена-Энскога. Однако ряд упрощений, часто вводимых при решении сложных аэрономических задач (например, учет только парных столкновений взаимодействующих молекул, предположение об отсутствии внутренней структуры сталкивающихся частиц вещества при определении коэффициентов молекулярного обмена и т.п.), существенно уменьшает преимущества, заложенные изначально в кинетических уравнениях.  [c.68]


Смотреть страницы где упоминается термин Переноса уравнение строгий анализ : [c.8]    [c.6]    [c.296]    [c.775]    [c.89]   
Теория ядерных реакторов (0) -- [ c.35 , c.37 ]



ПОИСК



Анализ уравнений

Переноса уравнение уравнение переноса

Переносье

Ток переноса



© 2025 Mash-xxl.info Реклама на сайте