Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Рассеяние нейтронов на диффузное

Зависимость амплитуды рассеяния нейтрона от ориентации спина ядра и от изотопного состава приводит к тому, что кристалл отражает нейтроны в различных направлениях, а не только в тех, которые разрешены условием (10.18) Брэгга — Вульфа. Это дополнительное отражение будет уже не когерентным, а диффузным.  [c.553]

Интересным свойством нейтронов является их способность отражаться от различных веществ. Это отражение не когерентное, а диффузное. Его механизм таков. Нейтрон, попадая в среду, испытывает беспорядочные столкновения с ядрами и после ряда столкновений может вылететь обратно. Вероятность такого вылета носит название альбедо нейтронов для данной среды. Очевидно, что альбедо тем выше, чем больше сечение рассеяния и чем меньше сечение поглощения нейтронов ядрами среды. Хорошие отражатели отражают до 90% попадающих в них нейтронов, т. е. имеют альбедо до 0,9. В частности, для обычной воды альбедо равно 0,8. Неудивительно поэтому, что отражатели нейтронов широко применяются в ядерных реакторах и других нейтронных установках. Возможность столь интенсивного отражения нейтронов объясняется следующим образом. Вошедший в отражатель нейтрон при каждом столкновении с ядром может рассеяться в любую сторону. Если нейтрон у поверхности рассеялся назад, то он вылетает обратно, т. е. отражается. Если же нейтрон рассеялся в другом направлении, то он может рассеяться так, что уйдет из среды при последующих столкновениях.  [c.549]


Несмотря на сложность описанной методики, метод определения упругих постоянных ио спектрам диффузного рассеяния рентгеновских лучей и тепловых нейтронов на тепловых колебаниях решетки приобретает все большее распространение. Основным его преимуществом является то, что исследования можно проводить на мелких монокристаллах и особо хрупких веществах.  [c.271]

Во-вторых, ввиду наличия собственных спинов нейтроны могут взаимодействовать с неспаренными спинами электронов точно так же, как и с ядерными спинами. Для почти случайной ориентации спинов парамагнитного материала такое взаимодействие приводит к возникновению диффузного фона, спадающего с увеличением угла рассеяния значительно быстрее, чем в случае рентгеновских лучей. Рассеяние в этом случае производится электронами, обладающими  [c.96]

Мы будем не раз подчеркивать, что эффекты, которые будут рассматриваться как составляющие поглощения, сильно зависят от условии проводимого эксперимента. При взаимодействии пучка излучения с веществом происходит большое число упругих и неупругих процессов рассеяния. Степень включения рассеянного излучения в экспериментальные измерения определяется тем, учитывается ли вклад диффузного рассеяния определенного вида в измеряемые интенсивности непосредственно или же через функцию поглощения. Например, при дифракции нейтронов с анализом энергий измерение резких брэгговских отражений,от кристалла будет исключать тепловое диффузное рассеяние. Потеря энергии падающего и брэгговских пучков, вызванная тепловым диффузным рассеянием, дает незначительный вклад в величину поглощения.  [c.279]

С другой стороны, для некоторых сплавов, содержащих атомы с отрицательной длиной рассеяния (атомной амплитудой), оказывается возможным так подобрать состав или распространенность изотопов, чтобы для дифракции нейтронов средняя амплитуда рассеяния (тд/д -Ь Шв/в) равнялась нулю, как в случае сплавов Си—изученных Мозером [313]. Для таких сплавов с нулевой матрицей основные рефлексы и сопутствующее им тепловое диффузное рассеяние и рассеяние Хуанга исчезают, и в (17.23) остается лишь третья часть этого выражения.  [c.382]

Мы редко обладаем достаточной информацией для того, чтобы совершенно точно установить, как расположены атомы в неупорядоченной системе. Если мы попробуем увидеть беспорядок на атомном уровне, пользуясь пучком нейтронов, рентгеновских лучей или электронов, мы просто обнаружим диффузное рассеяние от некоторых участков образца, содержаш их большое число атомов. Сведения, получаемые из дифракционных опытов, носят статистический характер и на практике ограничены двухчастичными структурными характеристиками того же типа, что и радиальная функция распределения ( 2.7). Большая часть гл. 2 была посвяш ена обсуждению трудностей интерпретации результатов такого рода с целью получить однозначную картину локальной структуры жидкости или стекла. Сделать выбор между микрокристаллической моделью, моделью случайной сетки и моделью случайных скоплений можно, лишь исследуя макроскопические физические свойства материала (например, текучесть) либо исходя И8 определенных химических принципов (например, условий возникновения валентной связи).  [c.150]


Недавно Уилкинсон и др. [221] изморили когерентное и некогерентное рассеяние нейтронов на электронах ванадия, свинца и ниобия выше и ниже Т0ЧК11 перехода. Ни в одном из этих случаев не было обнаружено изменения когерентного рассеяния или диффузного фона. Этот результат показывает, что при переходе в сверхпроводящее состояние не нронсходпт зал1етных изменении электронного распределения. Исследование рассеяния Нейтронов на ядрах в свинце и ниобии показало, что при переходе не происходит резко выраженного изменения колебаний атомной решетки ). Эти же авторы показали, что полное сечение для тепловых нейтронов у олова в нормальном и сверхпроводяш,ем состояниях одинаково в пределах 1 %.  [c.672]

Диффузное рассеяние тепловых нейтронов на статич. неоднородностях аналогично Д. р. р. л. и описывается подобными ф-лами. Изучение рассеяния нейтронов даёт возможность исследовать также динамич. характеристики колебаний атомов и флуктуац. неоднородностей (см. Неупругое рассеяние нейтронов).  [c.692]

Дефекты кристаллич. структуры (примеси, вакансии, флуктуации состава, сгатистич. разупорядочен-ность и др.) приводят к ослаблению и уширению осн. рефлексов и появлению диффузного рассеяния. Анализ спектра рассеянных нейтронов позволяет отделить рассеяние на статич. дефектах от рассеяния на колебаниях кристаллич. решётки.  [c.287]

Из данных малоуглового рассеяния нейтронов можно было заключить, что близкодействуюш ее упорядочение спинов наблюдается и в парамагнитной области. Например, у железа найдены атомные агрегации размером 10 А ( 45 атомов), сохраняющие спиновую корреляцию при температурах на 80° С выше Гк- Более того, как показывают результаты диффузного рассеяния нейтронов, при нагревании железа до 1000° С парамагнитный момент оказывается равным  [c.251]

Что же делает неправильной простую схему Лаидау Причину можег подсказать сходство между фазовым переходом 2-го рода и критической точкой. Как известно, окрестность критической точки в жидкости характеризуется так называемой критической опалесценцией . Речь идет о резком увеличении рассеяния света, обязанном возрастанию флуктуаций плотности. Для фазового перехода 2-го рода наблюдается аналогичное явление резкое возрастание диффузного рассеяния нейтронов в магнитном металле в окрестности ферромагнитного перехода. Это явление тоже связано с возрастанием флуктуаций. Понять это можно, если учесть, что в окрестности точки фазового перехода  [c.499]

Основным методом изучения структуры аморфных материалов является метод дифракции рентгеноваких х лучей, электронов и нейтронов [67]. В главе 7 при рассмотрении вопросов дифракции излучения на кристаллах указывалось, что при рассеянии на неограниченном кристалле возникают узкие дифракционные максимумы, положение которых определяется в соответствии с формулой Вульфа -— Брэгга межплоскостными расстояниями, а ширина — размером кристалла,. В весьма грубой модели картину дифракции на аморфных материалах можно рассматривать как происходящую на совокупности ультрамалых беспорядочно ориентированных кристаллитов (см. рис. 12.2, а), и поэтому узкие дифракционные максимумы при переходе к рассеянию аморфными материалами должны трансформироваться в широкие диффузные гало. Такой подход позволяет качественно объяснить характер дифракционной картины от аморфных веществ, однако даже при исследовании структуры аморфных материалов с помощью наиболее высокоразрешающего метода — дифракции электронов — узкие дифракционные максимумы обнаружить не удалось. По этой причине модель аморфных материалов как ультрамикрокристал-лических веществ далеко не всегда считается справедливой. В качестве более корректной модели сейчас все чаще принимается модель непрерывного распределения сферических частиц, характеризующихся почти плотной упаковкой (иначе — случайной сеткой  [c.277]

Третья разновидность динамических методов определения модулей упругости — анализ рассеяния рентгеновских лучей и тепловых нейтронов на тепловых колебаниях решетки. Поскольку тепловые колебания представляют собой суперпозицию продольных и поперечных волн с широким набором длин волн (частот), вместо дифракционного рефлекса возникает более или менее широкая ди( )фузная область рассеянных лучей вблизи брэгговских углов отражения. Отдельным выделенным точкам в диффузном облаке соответствуют константы упругих волн с данной длиной волны и частотой. Таким образом, анализируя спектр теплового диффузного рассеяния в различных точках диффузного пятна, смещенных относительно дифракционного максимума для соответствующей отражающей плоскости кристалла, можно определить длину упругой волны, распространяющейся в выбранном направлении и, следовательно, найти упругие постоянные.  [c.270]


М. А. Кривоглаз, Диффузное рассеяние рентгеновских лучей и нейтронов, на флуктуационных неоднородностях в неидеальных кристаллах (Киев На-укова Думка, 1984),  [c.327]

Книга проф. Дж. Каули, внесшего существенный вклад в развитие физической оптики, охватывает материал, относящийся к оптике реитгеиовских лучей, электронов и нейтронов. Рассматриваются основы кинематической и динамической теории дифракции, диффузное и неупругое рассеяние, структурный анализ, явления упорядочения, а также конкретные дифракционные методы изучения структуры кристаллов.  [c.4]

При статическом смещении атомов не будет существенного отличия от динамического случая тепловых колебаний, за исключением того, что из-за отсутствия временной зависимости будет иметь местО лишь упругое рассеяние, и различие между возможностями дифракции реитгеиовских лучей и нейтронов практически устраняется. Обобщенная функция Паттерсона рассматривается только как функция трех простраиствеииых координат. Как увидим далее, будет иметь место диффузное рассеяние, доюльно близкое к тепловому, а фактор, применимый к резким брэгговским отражениям, будет подобен фактору Дебая — Валлера.  [c.262]

Для дифракции рентгеновских лучей или нейтронов значение функции поглощения, связанной с тепловым диффузным рассеянием, очень мало, поскольку оно входит в рассмотрение сначала в виде членов рассеяния второго порядка, и, таким образом, в отличие от фактора Дебая—Валлера это значение пренебрежимо мало в условиях кинематического рассеяния. В условиях динамического рассеяния для рентгеновских лучей вероятность двойного диффузного рассеяния с заметной амплитудой также пренебрежимо мала . Однако, как мы увидим ниже, в условиях динамической дифракции электронов коэффициенты поглощения, связанные с тепловым диффузным рассеянием, могут оказаться важными.  [c.280]


Смотреть страницы где упоминается термин Рассеяние нейтронов на диффузное : [c.656]    [c.288]    [c.62]    [c.63]    [c.108]    [c.692]    [c.656]    [c.54]    [c.72]    [c.430]    [c.19]   
Справочник по рентгеноструктурному анализу поликристаллов (1961) -- [ c.792 , c.805 ]



ПОИСК



Диффузное рассеяние

Нейтрон

Рассеяние нейтронов



© 2025 Mash-xxl.info Реклама на сайте