Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сталь и сплавы устойчивые термическая обработка

Магнитотвердые стали и сплавы, применяемые для постоянных магнитов, должны обладать большой и устойчивой коэрцитивной силой. Постоянные магниты изготовляют из высокоуглеродистых и легированных сталей и специальных сплавов, химический состав, термическая обработка и магнитные свойства которых даны в табл. 20.  [c.317]

Химико-термическая обработка металлов. Широкое практическое использование металлов и некоторых их сплавов, в частности сталей, было бы немыслимо без разнообразных методов упрочнения их поверхностного слоя. Все эти методы в своей совокупности называют химико-термической обработкой металлов. Цели этой обработки различны. В одних случаях ее производят для повышения твердости, износоустойчивости, предела выносливости, в других — для повышения химической и коррозионной устойчивости, в третьих — для улучшения внешнего вида или подготовки поверхности к последующим операциям, например к покраске.  [c.96]


Несколько иначе производится термическая обработка жаропрочных аустенитных сталей. После закалки этих сталей производится отпуск, который обычно применительно к этим сталям называется стабилизирующим или просто стабилизацией. Длительный стабилизирующий отпуск в течение нескольких часов производится при температурах 600—850°, превышающих на 100—150° рабочие температуры. При стабилизации происходит выделение из аустенита высокодисперсных частиц карбидов и других химических соединений, которые затрудняют сдвиги в зернах аустенита и тем самым упрочняют их. Процесс стабилизации жаропрочных аустенитных сталей подобен старению алюминиевых сплавов (см. параграф 19). Превышение температуры стабилизации по сравнению с рабочей температурой необходимо для того, чтобы процессы выделения карбидов и их коагуляция закончились полностью до начала работы стальной детали и чтобы при ее работе никаких структурных превращений в стали не происходило. Термической обработкой создается устойчивая (стабильная) структура. Поэтому и отпуск в этом случае называется стабилизирующим.  [c.188]

Коэффициент пропорциональности Е (графически равный tg а), характеризующий упругие свойства материала, называется модулем нормальной упругости. При заданной величине напряжения с увеличением модуля уменьшается величина упругой деформации, т. е. возрастает жесткость (устойчивость) конструкции (изделия). Поэтому модуль Е также называют модулем жесткости. Величина модуля зависит от природы сплава и изменяется незначительно при изменении его состава, структуры, термической обработки. Например, для различных углеродистых и легированных сталей после любой обработки =21000 кгс/мм .  [c.173]

Отпуск - термическая обработка, заключающаяся в нагреве металла или сплава, подвергнутого закалке с полиморфным превращением, до определенной температуры (для стали - ниже температуры эвтектоидного превращения АсО, в выдержке и последующем охлаждении, с целью превращения метастабильной или неравновесной структуры в более устойчивую. Отпуск позволяет уменьшить хрупкость и повысить пластичность материала. Таким образом, в результате сочетания закалки с отпуском получается структура с более высоким уровнем свойств, чем после отжига. Но абсолютно устойчивое состояние после отпуска не достигается, как это происходит при отжиге.  [c.429]


Межкристаллитная коррозия обычно возникает в зоне сварных щвов. Это объясняется тем, что при термической обработке нержавеющих сталей (высокохромистых) при высокой температур.е (1000—1110° С) и последующем относительно быстром охлаждении происходит изменение состава металла по границам кристаллов за счет образования карбидов, т. е. соединения железа с углеродом, обладающих меньшей устойчивостью к коррозионным средам по сравнению с хромом. Склонность алюминиевых сплавов к межкристаллитной коррозии объясняется образованием по границам зерен соединений менее коррозионностойких, чем основная часть зерен металла.  [c.9]

Физико-механические свойства чугунов зависят от формы включений графита и особенностей структуры металлической матрицы, формирующейся в процессе распада аустенита при охлаждении отливок. Для получения компактных включений графита в чугунных отливках в качестве модификаторов широко используются редкоземельные элементы. Однако характер влияния редкоземельных элементов на структурные изменения при эвтектоидном превращении в железоуглеродистых сплавах еще во многом неясен. В работах [1—3] отмечается ферритообразующее действие редкоземельных элементов в сталях, тогда как в работах [4, 5] указывается на снижение критических точек и повышение устойчивости аустенита. При модифицировании редкоземельными элементами чугунов наблюдалось увеличение количества перлита в матрице Влияние модификаторов нередко определяли по величине присадок, что приводило к значительным погрешностям, поскольку степень усвоения их может изменяться в широких пределах [6]. Отсутствие количественных данных о влиянии редкоземельных элементов на устойчивость аустенита затрудняет выбор обоснованных режимов охлаждения после затвердевания или при специальной термической обработке модифицированных чугунов.  [c.129]

Железо-хромистые сплавы образуют класс т. н. нержавеющих сталей. Различают нержавеющее железо (0,1- 0,15% С 12-М5% Сг) и нержавеющую сталь (0,34-0,4% С 12-М5% Сг). Первое обладает несколько более низкими механическими качествами, но зато легче обрабатывается и не нуждается в термич. обработке. Хим. устойчивость нержавеющей стали в большой степени зависит от ее термич. обработки. Необходима закалка 850—900° на воздухе или в масле, с отпуском 500—600°. У отожженной стали антикоррозионные качества понижаются в несколько раз. Применение нержавеющих сталей видно из табл. 2, где сопоставлены стали углеродистая, нержавеющая и сталь марки V2A. Добавка к стали небольшого процента меди повидимому полезна. Марганец понижает антикоррозионные качества и его присутствия необходимо избегать при изготовлении этой стали. Весьма вредны также включения окислов. Нержавеющие стали в термически обработан, виде и нержавеющее железо могут применяться при работах с водными растворами солей (морская вода, рудничные воды) и с растворами к-т невысоких концентраций (ва исключением НС1) эти.стали в настоящее время  [c.41]

Существует много марок деформируемых сплавов алюминия. Наибольшее применение имеют сплавы, известные под названием дюралюминов. В переводе это слово обозначает твердый алюминий. В состав дюралюмина, кроме алюминия, входят магний, марганец и медь. Применяются еще и другие деформируемые сплавы, например сплав авиаль, содержащий магний, марганец, медь и кремний. Для всех этих сплавов нужна термическая обработка, после которой они приобретают прочность, близкую к прочности углеродистой стали. Если учесть, что удельный вес этих сплавов в два с половиной раза меньше стали, то становится понятным, почему они получили широкое применение в авиации. Так, дюралюмин применяется для наиболее ответственных деталей каркаса и обшивки самолета. Недостатком таких сплавов является пониженная устойчивость против коррозии.  [c.18]

В некоторых случаях при очень быстром движении коррозионной среды или при сильном ударном механическом действии ее на металлическую поверхность наблюдается усиленное разрушение не только защитных пленок, но н самого металла, называемое кавитационной эрозией. Такой вид разрушения металла наблюдается у лопаток гидравлических турбин, лопаете пропеллерных мешалок, труб, втулок дизелей, быстро-ходшчх насосов, морских гребных винтов и т. п. Разрушения, вызываемые кавитационной эрозией, характеризуются появлением в металле трещин, мелких углублений, переходящих в раковины, и даже выкрашиванием частиц металла. С увеличением а1-рессивности среды кавитадиоппая устойчивость конструкционных металлов и сплавов понижается. Кавитационная устойчивость металлов и сплавов в значительной степени зависит не только от природы металла, но н от конфигурации отдельных узлов машин и аппаратов, их конструктивных особенностей, распределения скоростей потока жидкостей и др. Известно также, что повышение твердости металлов повышает их кавитационную стойкость. Этим объясняется, что для борьбы с таким видом разрушения обыч)ю применяют легированные стали специальных марок (аустенитные, аустенито-мартенситные стали и др.), твердость которых повышают путем специальной термической обработки.  [c.81]


В высоколегированной низкоуглеродистой стали типа тинидур или сплаве на никелевой основе типа нимоник (см. табл. 34) после закалки при высоких температурах, старения при повышенных температурах, по всей вероятности, образуются сверхструктуры (упорядоченные твердые растворы) и интерметаллиды типа NigTi, или промелсуточные фазы. Длительное действие напряжений в условиях повышенных температур люжет вызвать ряд превращений в структуре стали, например, переход пластинчатого перлита в зернистый, что сильно снижает предел ползучести стали. Закалка и отпуск (улучшение) стали, предназначенной для работы при повышенных температурах, создающие все же неустойчивую сорбитную структуру, снижают предел ползучести стали. Поэтому термическая обработка жаропрочной стали долл на обеспечивать у нее наиболее устойчивую структуру при рабочих температурах. Это создается путем соответствующего высокого отпуска, нормализации или отжига.  [c.363]

Четвертая группа. Отпуск — вид термической обработки, заключающийся в низкотемпературном (ниже температуры превращения) нагреве закаленного сплава для получения структурно более устойчивого его состояния. Отпуск—вторичная операция, которая осуществляется всегда после закалки. Обычно отпуск сплавов ведут при температурах 160—500° С. Однако и при этой температуре подвижность атомов достаточно большая и они могут перемещаться, перегруппировываться, образуя более устойчивую структуру сплава. Часто при отпуске из пересыщенного твердого раствора выделяются тончайшие частицы химических соединений. Например, при отпуске в стали выделяется цементит РезС, в дуралюмине — соединение СиАЬ, в жаропрочных никелевых сплавах — Ы1з(А1, Т1) и др.  [c.159]

Небольшие количества мартенсита вредны, особенно при низких напряжениях Содержание в стали довольно больших количеств б-феррита может вызвать значительное иоиышеиис сопротивления коррозионному растрескиванию. Последнее зависит как от состава стали, так и от распределения фаз [18]. Если еодержапне углерода, азота и молибдена низкое, то стали, содержащие большие количества мартенсита, очень устойчивы к коррозионному растрескиванию [1, 18, 33], но в отличие от ферри-то-аустенитных сталей устойчивость к растрескиванию мартенситно-аустенитных сталей в очень сильной степени зависит от термической обработки и поэтому никаких нро-мышленных сплавов на этой основе не разработано.  [c.256]

Хохманн [16] сообщил, что низкоуглеродистая сталь (- 0,002% С) с 25% Сг была устойчива к межкристаллитной коррозии. Введение в такой сплав 0,04%) С снова делает его склонным к межкристаллитной коррозии, добавка 0,2% N2 не оказывает такого влияния. Легирование титаном в количестве восьмикратном или более от содержания углерода обеспечивает стойкость при испытаниях в растворе Си504, но не в кипящей 65 %-ной НЫОз [14]. Легирование ЫЬ оказывает такое же действие, и только термическая обработка, описанная выше, сообщает сталям стойкость в НЫОз-  [c.253]

В отличие от аустенита в стали, в сплавах титана при обычной термической обработке отсутствует стабилизация Р-фазы за счет фазового наклепа. Термическая же стабилизация р-фазы была обнаружена в опытах Де Лазаро, Хансена и др., а также Махлина и Вайнига, которые провели сравнение устойчивости р-фазы при обычной и ступенчатой закалках сплавов титана с 9—11% Мо. Однако эффект стабилизации р-фазы при ступенчатой закалке они объяснили только снижением термических напряжений, не учи-  [c.11]

К а-тптановым относят сплавы, структура которых представлена в основном а-фазой. Основным легирующим элементом этих сплавов является алюминий. Оказывая весьма благоприятное влияние на свойства титана, алюминий обладает следующими преимуществами перед остальными легирующими компонентами. Он широко распространен в природе, доступен и сравнительно дешев. Удельный вес алюминия значительно меньше удельного веса титана, поэтому при введении алюминия уменьшается удельный вес сплавов и повышается их удельная прочность по удельной прочности а-титановые сплавы превосходят большинство нержавеющих и теплостойких сталей при температурах до 400—500° С. Жаропрочность и сопротивление ползучести сплавов титана с алюминием выше, чем у остальных сплавов с такой же степенью легирования титан с а-структурой является лучшей основой для сплавов, работающих при повышенных температурах, чем титан с Р-структурой. Алюминий повышает модуль нормальной упругости, способствуя повышению устойчивости изделий из титана. Двойные сплавы титана с алюминием, содержащие до 6% А1, термически стабильны и не охрупчиваются при нагреве до температур 400—500° С. Сплавы титан — алюминий коррозионноустойчивы при довольно высоких температурах и слабо окисляются это позволяет проводить горячую обработку титана с алюминием при более высоких температурах, чем нелегированного титана. Весьма ценным свойством сплавов титана с алюминием является их хорошая свариваемость эти сплавы даже при значительном содержании алюминия однофазны и поэтому не возникает охрупчивания в материале шва и в околошовяой зоне.  [c.412]


Смотреть страницы где упоминается термин Сталь и сплавы устойчивые термическая обработка : [c.74]    [c.217]    [c.9]    [c.310]    [c.43]    [c.199]    [c.34]    [c.21]   
Металловедение и термическая обработка (1956) -- [ c.768 ]



ПОИСК



Обработка сплавов

Обработка термическая сплавов термическая

Обработка термическая сталей

Сплавы Сталь

Сплавы Термическая обработка

Сталь и сплавы устойчивые против абразивного износа (при трении скольжения) свойства и термическая обработка

Сталь и сплавы устойчивые против абразивного износа (при трении скольжения) состав термическая обработка, свойств

Сталь обработка

Термическая устойчивость —



© 2025 Mash-xxl.info Реклама на сайте