Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Центробежное симметричного волчка

BJg, DJu — тины симметрии непрерывной вращательно-инверсионной группы Кн BJ, Вл , — постоянные центробежного искажения в симметричных и асимметричных волчках  [c.759]

Л-ветвь В — вращательная, В у центробежная постоянные, DJ4i В). Вращат. спектр состоит из почти эквидистантных линий, интервал между к-рыми примерно равен 2В. Вращат. спектр молекул типа симметричного волчка также прост, в соответствии с правилами отбора для таких молекул Д/ — 0, 1, АК = = о, он состоит из линий с частотами  [c.202]


В молекулах чисто вращательные переходы подчиняются О. п. для изменения проекции полного утл. момента (характеризуется квантовым числом К) на выделенную ось симметрии молекулы. Так, для молекул типа жёсткого симметричного волчка Д7С = 0 в поглощении. Однако центробежное искажение и эффекты колеба-тельно-вращат. взаимодействия еибронного взаимодействия) существенно ослабляют это О. п. В частности, в спектрах молекул симметрии Сз в осн. состоянии разрешаются переходы с АК = 3, 6 ит. д. (вероятность переходов с АК — 6 на 4 порядка меньше, чем переходов с АК — 3), а в вырожденных вибронных состояниях возможны и переходы с АК = 1, 2 и т. д. Для молекул типа асимметричного волчка О. п. по АК теряют смысл.  [c.487]

Для вращательных состояний молекулы типа жесткого симметричного волчка число К является точным квантовым числом, однако для колебательно-вращательных или ровибронных состояний оно является приближенным квантовым числом. Это квантовое число теряет смысл за счет эффектов центробежного искажения и кориолисова взаимодействия. Так как гамильтониан молекулы коммутирует с операцией обращения времени (которая переводит любую волновую функцию в ее комплексносопряженную см. гл. 6), каждая собственная функция всегда содержит суммы или разность собственных функций с k = К н k == —К. Поэтому энергетические уровни могут быть классифицированы по значениям положительного квантового числа К, а не квантового числа k, получающего положительные и отрицательные значения. Квантовое число J является приближенным для полных внутренних состояний Е и теряет смысл, например, при учете взаимодействия Япзг, зависящего от ядерного спина. Однако число F является точным квантовым числом для изолированной молекулы в свободном пространстве.  [c.309]

Таким образом, в молекуле типа симметричного волчка доминирующее взаимодействие, обусловленное оператором fer, может иметь место между, такими электроино-вращательными состояниями, у которых произведение тннов симметрии электронных функций содержит тип симметрии вращения, а вращательное квантовое число К удовлетворяет правилам отбора АК = О или 1 в зависимости от тина симметрии вращательного оператора, связывающего электронные состояния. Правила отбора по К теряют смысл при учете эффектов центробежного искажения и кориолисова взаимодействия, которые смешивают состояния с различными К в пределах одного электронного состояния [см. (11.105) и (11.108)]. Если для молекулы типа асимметричного волчка используется молекулярная группа вращений Ог, то произведениям типов симметрии взаимодействующих электронных состояний, содержащим типы симметрии операторов Ja, h и 1с, соответствуют вращательные правила отбора (Д/Са — четное, Д/Сс —нечетное), (ДА а — нечетное, А/(с — нечетное) и (Д/Са — нечетное, Д/Се — четное) соответственно. Если в рассматриваемых состояниях молекула близка к вытянутому симмет-рич1юму волчку (т. е. Ка является полезным приближенным квантовым числом), то правило Д/(а —четное (или нечетное) можно заменить на Ка — О (или 1) для почти сплюснутого волчка такая замена применима к ts.K -  [c.327]


В отсутствие резонансов вычисление поправок на центробежное искажение и кориолисово взаимодействие методом возмущений приводит к эффективному вращательному гамильтониану или уотсониану [113, 118, 133, 134, 136 ], в котором последовательные члены содержат вторую, четвертую, шестую и т. д. степени компонент оператора углового момента. Эффективный вращательный гамильтоииан коммутирует с операциями молекулярной группы вращений и в отсутствие резонансов между состояниями, вызываемых центробежным искажением или корнолисовым взаимодействием, число К остается приближенным квантовым числом для симметричного волчка, а неприводимые представления группы D2 дают хорошую классификацию уровней асимметричного волчка. Для молекул типа сферического волчка центробежное искажение и кориолисово взаимодействие приводят к важному явлеиию частичного расщепления (2/+ 1)-кратного вырождения по k каждого уровня. Максимальное число расщепленных компонентов равно полному числу неприводимых представлений группы МС, входящих в приводимое представление Frv. Например, вращательный уровень с / = 18 основного колебательного состояния молекулы метана состоит из уровней с различными типами симметрии группы МС (см. табл. 10.14)  [c.331]

Приближенные квантовые число G и ( 1). Центробежное искажение и кориолисово взаимодействие в симметричном волчке могут смешивать состояния с различными значениями К [см., например, правила отбора (11.105), (11.108)]. Если эти взаимодействия сильные, то число /С теряет смысл даже как приближенное квантовое число. Однако па основании принципов симметрии можно ввести другие квантовые числа G и Gv для классификации колебательно-вращательных состояний молекулы типа симл етричного волчка [54]. Введем эти квантовые числа для частного случая молекулы СНзР. Полную колебательно-вращательную волновую функцию в нулевом приближении можно записать в виде  [c.332]

Колебательно-вращательные взаимодействия, обусловленные центробежным искажением и кориолисовым взаимодействием, приводят к тому, что для симметричного волчка число К нельзя считать квантовым числом, и, следовательно, запреиденные переходы, не удовлетворяющие правилам отбора (11.171) и  [c.352]

Итак, мы показали, что энергетические уровни молекул можно классифицировать по типам точной симметрии, базисной симметрии и приближенной симметрии, а также по точным и приближенным квантовым числам. Наиболее полезными символами для классификации уровней являются Г (или четность), F, Frve, /, /, S, N, колебательные квантовые числа Vt и вращательные квантовые числа К, ( /) для симметричного волчка, Ка, Кс ДЛЯ асимметричного волчка и R для сферического волчка. Для определенных целей можно использовать также базисные типы симметрии Гг, Fv, Ге, Frv и Fve группы МС. Эти типы симметрии могут быть использованы для выявления смешивания уровней различными возмущениями и при определении правил отбора для электрических дипольных переходов. Среди наиболее важных правил отбора для возмущений особое место занимают правила, согласно которым ангармонические возмущения связывают уровни одинакового типа Fv, центробежное искажение и кориолисово взаимодействие связывают уровни одинакового типа Frv, а вибронное взаимодействие связывает состояния одинакового типа симметрии Fve. Получены также правила отбора по колебательным и вращательным квантовым числам. Выведены правила отбора для электрических дипольных переходов по колебательным, вращательным и электронным квантовым числам и по типам симметрии переходы, не подчиняющиеся этим правилам отбора, называются запрещен  [c.362]

Если плоская молекула является симметричным волчком с точки зрения симметрии, то, как показано Даулингом [304], существуют также соотношения между тремя постоянными центробежного растяжения  [c.86]


Тонкая структура невырожденных электронно-колебательных состояний. Во вращательных уровнях данного электронно-колебательного уровня, имеюпщх одно и то же /, но различные типы, по-разному проявляется влияние кориолисова взаимодействия с вращательными уровнями других электронно-колебательных уровней, влияние центробежного растяжения или других взаимодействий более высоких порядков. Поэтому в достаточно высоком приближении существует расщепление на столько уровней, сколько показано числом горизонтальных линий на фиг. 38. Иными словами, когда молекула деформирована центробежными силами или неполносимметричными колебаниями, она перестает быть строго симметричным волчком и исчезает причина для (21 - - 1)-кратного вырождения. Вырождение снимается в той мере, в какой нарушена симметрия. Получающиеся расщепления подробно рассмотрены Яном [617], а затем Хехтом [485]. К сожалению, эти расщепления нельзя описать простыми формулами. Они зависят от матричных элементов различных возмущающих членов.  [c.103]

Центробежная деформация. Некоторые детали влияния центробежных деформаций на энергетические уровни молекул типа асимметричного волчка впервые рассмотрены Кивелсоном и Вильсоном [676]. Поло [999] и Эрланд-сон [360, 361 ] вывели простые формулы. В данном случае деформация характеризуется шестью постоянными вместо трех (Dj, Djj , Dk) у молекул типа симметричного волчка. Три дополнительные постоянные сначала обозначались 6j, i 5 и Rg, но здесь они обозначены но Нильсену [963] соответственно Di, и Dg. В предельном случае симметричного волчка == Dg == з =" О-  [c.110]


Смотреть страницы где упоминается термин Центробежное симметричного волчка : [c.188]    [c.297]    [c.621]   
Электронные спектры и строение многоатомных молекул (1969) -- [ c.85 , c.86 , c.88 , c.232 ]



ПОИСК



274, 323—327 симметричный

410 центробежном

Волосевич

Волчков

Волчок

Волчок симметричный

Ле, Л[0], Ару Врр >Э 0 Вру симметричных волчков

Общие формулы вращательнохТ энергии.— Приближение для волчков, близких к симметричным.— Центробежная деформация.— Свойства симметрии вращательных уровней.— Правила сумм,— Спиновое расщепление.—В озмущения Другие типы молекул

Растяжение молекулы под действием центробежных сил симметричные волчки



© 2025 Mash-xxl.info Реклама на сайте