Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Колебательная структура электронных переходов

Если провести анализ колебательной структуры электронного перехода, используя данные Приложения ХУП, и определить для каждой полосы значения и и и", то можно построить график ин-  [c.197]

Колебательная структура электронных переходов  [c.142]

КОЛЕБАТЕЛЬНАЯ СТРУКТУРА ЭЛЕКТРОННЫХ ПЕРЕХОДОВ 1/, А  [c.143]

Рио. 3. Электронно-колебательный спектр молекулы азота, полученный в трубке Гейслера. Хорошо видна колебательная структура электронной полосы, возникающая в результате переходов между различными колебательными состояниями электронных уровней. Переходу между электронными уровнями без изменения колебательно ) квантового числа (Ли = 0) соответствует полоса 3371 А. Справа и слева от нее расположены системы полос, получающиеся при том же электронном переходе, но с одновременным увеличением пли уменьшением колебательного квантового числа V.  [c.291]


С учетом проведенного выше разбиения энергии молекулы можно записать волновое число для перехода между выделенными состояниями п и п" в виде x = E ,—En, = T +G +F —(T"e+G" + F ). Соответственно наблюдают спектры нескольких типов а) вращательные спектры, отвечающие переходам между вращательными уровнями в пределах неизменного колебательного и электронного состояния б) колебательно-вращательные спектры, возникающие при переходах между вращательными уровнями разных колебательных состояний при неизменном электронном состоянии в) электронные спектры, характеризующие переходы между колебательно-вращательными уровнями разных электронных состояний. Помимо того, в радиочастотной и микроволновой областях спектра наблюдают переходы между подуровнями тонкой структуры для данного электронно-колебательно-вращательного уровня молекулы, а также спектры электронно-спинового и ядерно-магнитного резонансов, соответствующих переходам между зеемановскими компонентами расщепленных в магнитном поле уровней молекулы.  [c.849]

Что касается электронных переходов в молекулах, то они аналогичны переходам в атомах, но в количественном отнощении являются более сложными благодаря тому, что структура молекулы сложнее простейшей атомной системы. Колебательные и вращательные энергетические уровни молекулы так же, как и электронные уровни, являются дискретными (квантованными). Вследствие этого общее число энергетических уровней и число возможных переходов между ними для молекул существенно больше, чем у атомов. Часто линии молекулярных спектров расположены весьма близко друг к другу, и их число довольно велико, благодаря чему они сли-  [c.25]

Поэтому при исследовании газовой фазы и сильно разбавленных растворов чаще ограничиваются расшифровкой колебательной структуры наблюдающихся электронных переходов. В электронно-колебательных спектрах, согласно правилам отбора, проявляется только часть нормальных  [c.94]

В растворах колебательная структура проявляется довольно редко, чаще наблюдаются широкие полосы, связанные с электронным переходом (рис. 1.45). По ним можно судить в основном только об энергии электронных состояний, информация же о частотах колебаний очень ограничена. В этих случаях необходимо-исследовать ИК- и КР-спектры.  [c.95]

Итак, в общем случае переходы в поглощении и испускании происходят между различными парами электронных уровней и потому должны характеризоваться разными частотами и чисто электронного перехода. Возникает вопрос о способах определения этих величин для спектров, лишенных колебательной структуры. Кроме того, существует довольно большое число веществ, у которых по тем или иным причинам люминесценция вообще не наблюдается. Для этих соединений необходимо определять (точнее, v J только по спектру поглощения. Последняя задача, очевидно, является частным случаем задачи об определении частот и у у по спектрам поглощения и испускания для систем с 4-уровневой схемой.  [c.9]


Каждое электронно-колебательное состояние молекулы характеризуется, кроме того, набором вращательных уровней. Электронный переход обычно сопровождается изменением колебательной и вращательной энергий молекулы, поэтому структура спектра существенно усложняется.  [c.14]

Рассматриваются общие закономерности электронного поглощения и испускания многоатомных соединений в жидкой фазе. Благодаря взаимодействию со средой, а также миграции колебательной энергии внутри системы процессы поглощения и испускания сложных молекул подчиняются определенным статистическим закономерностям. Это позволяет получить ряд, спектральных соотношений универсального характера и предложить достаточно общие методы определения молекулярных спектроскопических и термодинамических параметров. Они могут быть использованы при исследовании процессов перераспределения колебательной энергии и условий нарушения термодинамического равновесия в растворах, изучении конфигурации частиц среды и релаксации электронных состояний, для разделения полос поглощения и испускания, структура и форма которых искажаются за счет перекрывания спектров нескольких электронных переходов, различных типов центров, наличия примеси, что необходимо для последовательного и глубокого анализа влияния среды на спектры.  [c.30]

При электронно-колебательных переходах между основным и возбужденным состояниями сложной молекулы возникает сплошная асимметричная полоса поглощения с одним максимумом (рис. 11,6). Более крутым является ее длинноволновой склон. Полуширина полосы может достигать нескольких тысяч см Из-за размытия колебательной структуры спектры сложных молекул частично теряют свою индивидуальность. Спектры разных соединений различаются положением, полушириной, асимметрией. Стабильность контура сохраняется и по отношению к различным внешним воздействиям замене растворителя, изменению температуры и другим факторам.  [c.32]

Для соединений со структурными полосами частоты чисто электронных переходов в поглощении и испускании обычно отождествляют с частотами наиболее длинноволнового и коротковолнового вибронных максимумов соответствующих спектров (О — 0-переходы). При наличии в спектрах антистоксовых полос (уранилы [24] и др. вещества) прибегают к более подробному анализу их колебательной структуры.  [c.58]

Возможность применения формул (2.32) и (2.33) к сплошным спектрам сложных молекул впервые показана Клочковым [28]. Для описания контура полосы необходимо знать следующие параметры v, Уе, е, 2. Частота у-о, определенная из данных по колебательным спектрам или из анализа структуры электронной полосы родственного соединения, считается известной. Для определения частоты электронного перехода V в поглощении используют рекуррентные соотношения формулы (2.32)  [c.60]

Колебательная структура. Существует несколько признаков, позволяющих в совокупности установить колебательную природу максимумов электронных спектров. С этой целью проводят вибрационный анализ полос поглощения и испускания, для чего определяют разности частот отдельных максимумов V и частоты Уе, соответствующей электронному переходу, анализируют их, сравнивая между собой и с частотами колебаний, известными из инфракрасных спектров и спектров комбинационного рассеяния. В электронно-колебательных полосах наряду с частотами нормальных колебаний проявляются также их обертоны и комбинационные частоты. Если структура полос имеет колебательное происхождение, то такой анализ позволяет свести определенные из опыта значения Уп—Уе к небольшому числу собственных частот нормальных колебаний молекулы.  [c.68]

В случае НгО вторая область поглощения представляет собой прогрессию диффузных полос, простирающихся от 1411 до 1256 А с расстоянием между полосами порядка 800 см- . Такая низкая частота едва ли может соответствовать какому-либо иному колебанию, кроме деформационного. Наличие протяженной прогрессии по деформационному колебанию свидетельствует о значительном изменении величины угла. Действительно, рассматриваемый переход не согласуется с различными ридберговскими сериями, сходящимися к первому ионизационному пределу (отрыв 1 f i электрона), и, очевидно, является первым членом серии, соответствующим отрыву Засэлектрона (гл. III, разд. 2,г). Соответствующее состояние НгО+ является аналогом А состояния NHz (см. ниже), и поэтому представляется весьма вероятным, что в этом состоянии ион НгО+, подобно NH2, имеет почти линейную структуру. Если к иону Н2О+ в этом состоянии добавляется электрон на ридберговской орбитали, то образовавшаяся молекула НгО должна иметь конфигурацию, аналогичную конфигурации иона ИгО+ (или весьма близкую), что позволяет объяснить наблюдаемую колебательную структуру электронного перехода В - Х.  [c.501]


Колебательная структура электронных спектров. Поверхности потенц, энергии и соответствующие им системы колебат. уровней разл. электронных состояний иогут существенно отличаться друг от друга, поэтому колебат. структура электронных переходов подчиняется довольно сложным правилам отбора и электронно-колебат. спектр сильно отличается от чисто колебательного. Тем не менее оси. особенности колебат. структуры поддаются не только качеств., но и количеств, анализу. Теоретич. основой этого анализа является Франка — Кондона принцип, позволяюпщй предсказывать распределение интенсивностей полос колебат. структуры,  [c.203]

В основном состоянии X Bi молекула NHg сильно изогнута, так же как и молекула Н2О в своем основном электронном состоянии, в то время как в возбужденном состоянии A i молекула NH2 почти линейна (см. стр. 217). Снова, как и для других дигидридов, из-за сильного электронно-колебательного взаимодействия (эффект Реннера — Теллера) из одного П. -состояния линейной конфигурации возникают два состояния. Благодаря значительному изменению угла при электронном переходе в сиектре наблюдается длинная прогрессия полос с чередующейся интенсивностью для четных и нечетных значений К (так же как и в случае красных полос ВНг и СН2). Разности Д гС для уровней с i = О в верхнем состоянии сначала увеличиваются и только к концу прогрессии начинают уменьшаться. Дублетная структура электронного перехода обнаруживается в незначительном расщеплении почти всех линий (фиг. 95). Так же как и для красных полос ВН2 и СНг, момент перехода для рассматриваемой системы NH2 перпендикулярен плоскости молекулы (полосы типа С). Джонс и Рамсей [638а] проанализировали ряд горячих полос в спектре NH2 с целью определения значения частоты деформациоипого колебания V2 в основном состоянии. Вращательные и колебательные постоянные NH2 приведены в табл. 62.  [c.504]

В основе понимания колебательной структуры электронно-колеба-тельиых спектров молекул и кристаллов лежит принцип Франка — Кондона. Данная Кондоном формулировка квантовомеханического варианта этого принципа [61—63] является надежной основой для рассмотрения электронно-колебательных переходов и колебательной структуры спектров. Дальнейшее развитие теории, базирующееся главным образом на адиабатическом приближении Борна—Оппенгеймера, можно при желании рассматривать как развитие квантовомеханической теорией принципа Франка — Кондона (см. [64—66]).  [c.21]

Вращательные уровни энергии — это уровни, связанные с вращательным движением молекулы как целого. Вращение молекул приближенно рассматривают как свободное вращение твердого тела с тремя моментами инерции вокруг трех взаимно перпендикулярных осей. При этом возможны три случая 1) сферический волчок (все три момента инерции одинаковы) 2) симметричный волчок (два момента инерции одинаковы, третий отличен от них) 3) асимметричный волчок (все три момента инерции различны). Разности энергий соседних вращательных уровней составляют от сотых долей электрон-вольта для самых легких молекул до стотысячных долей электрон-вольта для наиболее тяжелых молекул. Вращательные переходы непосредственно изучаются методами инфракрасной спектроскопии и комбинационного рассеяния света, а также методами радиоспектроскопии. Колебательно-вращательные спектры получаются в ре-дультате того, что изменение колебательной энергии сопровождается одновременными изменениями вращательной энергии. Такие изменения происходят и при электронно-колебательных переходах, что и обусловливает вращательную структуру электронно-колебательных спектров.  [c.228]

B. . широко применяется при исследованиях атомов, ионов, молекул и твёрдых тел для изучения их знергетич. структуры, вероятностей переходов и др. характеристик. В область Х<200 нм попадают резонансные переходы ряда нейтральных ато.мов, подавляюп(его большинства одно- и двукратно ионизованных атомов, а также всех ионов более высокой кратности ионизации. Электронно-колебательно-вращательные переходы мне-  [c.236]

Возбуждение молекул нри атомных столкновениях характеризуется большим многообразием процессов в связи с наличием колебат. и вращат. структуры их уровней энергии. Возбуждение электронных переходов (при усреднении но колебательно-вращат. состояниям) в целом описывается теми же закономерностями, что и возбуждение атомов. Колебат. и элоктронно-колебат, переходы исследованы полнее, чем вращательные.  [c.300]

Поставить рукоятку 6 потенциометра чувствительности в среднее положение, а переключатель чувствительности 7 в положение 2 . Ступени переключения чувствительности 1 — 4 соответствуют работе со щеляхми различной ширины. При, переходе от положения 1 к 4 щели уменьшаются примерно в три раза, но снижается точность установки нуля по шкале миллиамперметра 8. Узкими щелями обычно пользуются для того, чтобы регистрировать спектры с большим разрешением, например для разрешения линий колебательной структуры в электронных спектрах. Во время одной серии измерений изменять чувствительность нельзя, так как это может привести к ошибкам в измерениях.  [c.152]

Знание частоты чисто электронного перехода необходимо для решения целого ряда спектроскопических задач. Для структурных спектров величина V, обычно определяется без особых затруднений на основании анализа колебательной структуры, но этот случай нас не интересует. Для веществ со сплошными электронными полосами дело обстоит зна-читёльно сложнее.  [c.9]

По квантовомеханическим представлениям молекула как целое может находиться в различных дискретных энергетических состояниях. Спектры, поглощения и люминесценции, отвечающие переходам из одного электронного состояния в другое, как правило, наблюдаются в ультрафиолете, иногда в видимой области. В ряде случаев (двуатомные молекулы) они имеют резко выраженную полосатую структуру вследствие наложения колебательных и вращательных термов на основной электронный переход.  [c.773]


Третий параметр различия матричных и газофазных спектров (фо 1а пиков) зависит от используемого спектроскопического метода. Колебательные полосы в матричных ИК-спектрах обычно имеют значительно меньшую ширину, чем в спектрах в газовсй фазе, благодаря отсутствию тонкой вращательной структуры. Напротив, электронные переходы дают в матрице в общем более широкие полосы из-за влияния матричной клетки. Некоторое сигналы в спектрах ЭПР почти  [c.107]

Вращательная структура электронно-колебательной полосы для двухатомной молекулы определяется ф-лой (26) и для дипольного излучения получаются, согласно правилу отбора Д7 = О, 1, три ветви — Q, Я и Р, частоты линий в к-рых даются ф-лами (29) и (27) (для 2—2 переходов А/ == О и Q-вeтвь отсут-ств ет). Однако, в отличие от колебательно-вращательных спектров. В и В относятся к различным электронным состояниям и могут сильно отличаться, поэтому В В" может быть сравнимо с В в В" наряду с В < В возможен и случай В > В". В результате в одной из ветвей (й-ветвь при В < В" и Р-ветвь при В > В") вращательные линии сгущаются, образуя резкую границу полосы — кант, и полоса оттенена в противоположную сторону. При В С В" получается оттенение в сторону меньших V (красное оттенение), при В >- В" — в сторону больших V (синее оттенение). Зависимость между V и то( (V = Го г )(рис. 16) наз. диаграммой Фортра.  [c.296]

Почти все электронные переходы в многоатомных молекулах дают спектры в видимой и ультрафиолетовой областях и лишь очень немногие — в инфракрасной области. И yчeниe этих спектров позволяет получать информацию о различных электронных состояниях, их вращательных и колеба-тельш>1х энергетических уровнях. Инфс рмация о вращательных и колебательных уровнях основных электронных С1)Стояний стабильных молекул в большинстве случаев получается легче и с большей точностью при исследовании инфракрасных, микроволновых и рамановских спектров. Значение из(учения электронных спектров стабильных молекул состоит в том, что они содержат информацию об электронной структуре этих молекул, геометрической структуре в возбужденных электронн1.(х состояниях и об ионизационных потенциалах, энергии диссоциации и т. д. Но для химически нестабильных молекул (свободных радикалов), для которых инфракрасные и комбинационные спектры получаются нелегко, изучение электронных спектров в настоящее время является единственным ) источником информации о вращательных и колебательных энергетических уровнях основного состояния и, следовательно, о геометрической структуре молекулы в этом состоянии.  [c.9]


Смотреть страницы где упоминается термин Колебательная структура электронных переходов : [c.76]    [c.357]    [c.387]    [c.47]    [c.71]    [c.60]    [c.83]   
Смотреть главы в:

Электронные спектры и строение многоатомных молекул  -> Колебательная структура электронных переходов

Лекции по молекулярной спектроскопии  -> Колебательная структура электронных переходов


Электронные спектры и строение многоатомных молекул (1969) -- [ c.142 , c.183 ]



ПОИСК



Колебательная структура электронных

Колебательные

Колебательные переходы

Переходы колебательная структура

Переходы электронно-колебательные

Переходы электронные

Структура электронных переходов вращательная колебательная

Электронная структура



© 2025 Mash-xxl.info Реклама на сайте