Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Изнашивание при динамическом нагружении

Это явление было названо электродинамическим фактором изнашивания. Для его экспериментального изучения использовались различные сопряжения машин игольчатые подшипники карданных передач, шлицевые соединения и др. Их подвергали динамическому нагружению на стенде, причем амплитудно-частотные характеристики динамических нагрузок соответствовали их реальным эксплуатационным значениям. Измеряли амплитуду и скорость изменения потока, магнитной индукции в сопряжении, электрические потенциалы на поверхностях сопряженных деталей, контролировали состояние поверхностей, электрическое сопротивление между контактирующими деталями, их температуру (среднюю и в стыке), оценивали возможность появления электрических разрядов в зоне контакта сопряжен-  [c.115]


На основе исследований электродинамического фактора изнашивания для повышения долговечности деталей узлов машин, работающих в условиях динамического нагружения, рекомендуется снижение динамических нагрузок в высокочастотной части спектра (выше 20 Гц) и создание постоянных контактных напряжений 300. .. 350 МПа  [c.117]

Практические приложения механики контактного разрушения при динамическом воздействии нацелены, главным образом, на построение моделей некоторых видов изнашивания (например, эрозионного). Кроме того, возможна оценка динамической вязкости разрушения. Например, согласно модели из статьи [10], испытуемый материал подвергают динамическому нагружению коническим или пирамидальным индентором с массой т и скоростью V до получения на поверхности материала отпечатка размером (1 и поверхностных трещин размером I. Критическое значение динамического коэффициента интенсивности напряжений можно оценить по формуле = , 2ту / п(1у/Р), где п — число трещин.  [c.634]

III — период аварийного наиболее интенсивного изнашивания, характеризующийся наличием изменившихся условий работы (увеличение скорости изнашивания как результат увеличения зазора в сочленении, увеличение динамического нагружения сочленения, возникновение неблагоприятных условий для работы слоя смазки,и т. п.).  [c.9]

ЛИЙ, работающих в экстремальных условиях (например, при —50°С), при форсированных режимах динамического, статического и циклического нагружений, при наложении абразивного изнашивания, при воздействии агрессивных сред и т. д. Поэтому наряду с традиционными испытаниями необходимо комплексно использовать такие методы исследования, как акустическая эмиссия, количественный анализ продуктов изнашивания, непрерывная регистрация структурных изменений в зоне контакта металла с покрытием при работе в паре трения с учетом воздействия окружающей среды на разрушение. Для изучения структуры композиции покрытие — основной металл следует шире привлекать стереологию, рентгеноспектральный микроанализ, ядерный гамма-резонанс, радиоспектроскопию. Принципы механики разрушения должны применяться не только для оценки трещиностойкости, но и для вычисления величины износа при абразивном изнашивании, а также учитываться при расчетах при теоретическом прогнозировании прочности соединения покрытия с основным металлом.  [c.193]


Таким образом, раскрытие закономерностей любого вида изнашивания при ударе неизбежно связано с необходимостью учета сложных взаимосвязанных процессов, происходящих при ударе упругопластической деформации, высокоскоростного нагрева и охлаждения, фазовых и структурных превращений, упрочнения и разупрочнения, развития усталостных явлений и др. Ударные нагрузки нарастают и снижаются в очень короткий промежуток времени (тысячные доли секунды) и порождают волны напряжений, которые исходят из зоны контакта. При многократных соударениях деталей в процессе эксплуатации современных машин, различных аппаратов и приборов возможно возникновение в одной детали одновременно упругих и пластических волн растяжения и сжатия. По-видимому, сложность явлений, сопровождающих соударение поверхностей, и связанное с этим принятие различных упрощающих предположений, отклонение реальных механических свойств от их абстрактных механических моделей служат причиной несогласованности результатов теоретических и экспериментальных исследований удара. Структура и механические свойства одного и того же металла существенно различаются при динамическом и статическом нагружении [22].  [c.22]

Методы расчета долговечности узлов и деталей машин связаны, с одной стороны, с определением динамических нагрузок, действующих на поверхности трения и на детали машин, а с другой— с показателями (критериями), оценивающими сопротивление пар трения изнашиванию и сопротивление усталостному разрушению в условиях нагружения.  [c.85]

ЧТО в 7—9 раз больше статических. Нагружение роликоопор носит вибрационный характер ( 80—100 гц). Причиной этого является вибрация рамы конвейера вследствие ее малой жесткости. Вибрационный характер нагружения роликов в сочетании с большими динамическими нагрузками способствует интенсивному изнашиванию трущихся элементов узла и усталостному разрушению этих деталей.  [c.382]

Диффузионные процессы в микрообъемах металла, примыкающих непосредственно к поверхности трения или к пленкам вторичных структур, могут приводить к значительным структурным изменениям в этих микрообъемах. Фрикционный нагрев способствует протеканию в поверхностном слое процессов отпуска, возврата и рекристаллизации, что приводит к разупрочнению поверхности, снижению ее несущей способности, усилению схватывания. В тяжелых условиях трения (высокие скорости и давления, отсутствие смазки), когда имеет место интенсивный фрикционный нагрев, в поверхностном слое стали может происходить а -> Y превращение. Возникает так называемый аустенит трения. И. М. Любарский с сотр. обнаружил на поверхности трения стали 20Х2Н4А аустенитный слой толщиной в несколько микрометров. После прекращения трения в процессе охлаждения этот аустенит полностью или частично распадался [20.40]. Аустенит трения в ряде случаев обладает повышенной устойчивостью и может сохраняться в структуре после охлаждения до комнатной и более низких температур. Это объясняется высоким уровнем его легированности, а также стабилизирующим влиянием деформационного и фазового наклепа. Поверхностный слой обогащается легирующими элементами в результате их диффузии из глубинных слоев металла (термодиффузия, восходящая диффузия), а также из окружающей среды. Так, при термическом разложении смазки в зоне контакта поверхность металла может насыщаться углеродом и другими элементами, содержащимися в смазке. Аустенит трения, обладая повышенной прочностью, теплостойкостью, может, увеличивать сопротивление стали изнашиванию. Образование аустенита при трении и его ускоренное охлаждение (вторичная закалка) приводят к формированию нетравящихся ( белых ) слоев на поверхности стальных деталей. Белые слои обладают высокой микротвердостью Я = 9 — 15 ГПа и значительной хрупкостью. Структура белых слоев и условия их возникновения при трении были рассмотрены в работах Б. Д. Грозина, К- В. Савицкого, И. М. Любарского и др. Установлено, что белые слои характеризуются высокой дисперсностью структуры, химической неоднородностью и сложным фазовым составом. В них присутствуют аустенит (20—80%), так называемый скрытноигольчатый (или мелкокристаллический) мартенсит и карбиды. В условиях динамического нагружения белые слои из-за высокой хрупкости интенсивно выкрашиваются, что и ведет к ускоренному повреждению поверхности.  [c.396]


Ответственные детали, в т.ч. массивные, работающие в условиях высокого образив-ного изнашивания а также при наличии значительных давлений и динамического нагружения подпятники гидронасосов, матрицы, ролики, толкатели, кулачки, накатные инструменты  [c.46]

В левой части диаграммы Г ерси - Штрибека локализована зона реализации граничного режима смазки как наиболее жесткого. Он реализуется при высоких удельных нагрузках на узел трения (высокое значение ), низких скоростях относительного перемещения пар трения (малом значении и), повышенных температурах (вызывающих снижение динамической вязкости Г ) и характеризуется не только повышенным коэффициентом трения, но и постоянным изнашиванием пар трения. В режиме граничной смазки в те или иные моменты эксплуатации работают практически все тяжело нагруженные узлы трения (при пуске и останове любых трибосистем, в мертвых точках цилиндропоршневой фуппы двигателя внутреннего сгорания и т.д.). В узлах трения, работающих при высоких нагрузках и температурах и сравнительно низких скоростях скольжения, фаничный режим смазки полностью или частично имеет место в течение всего периода работы сопряжения.  [c.187]


Смотреть страницы где упоминается термин Изнашивание при динамическом нагружении : [c.649]    [c.259]    [c.98]    [c.154]    [c.165]    [c.520]   
Трение износ и смазка Трибология и триботехника (2003) -- [ c.501 , c.502 ]



ПОИСК



Изнашивание

Нагружение динамическое



© 2025 Mash-xxl.info Реклама на сайте