Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Топка (топочная камера)

Термодинамическая система 6, 7 Термодинамические параметры состояния 7 Топка (топочная камера) 141  [c.262]

ГАЗОМАЗУТНЫЕ ТОПКИ Топочная камера  [c.75]

В паровых котлах на органическом топливе теплоту для нагрева рабочего тела получают в топках (топочных камерах) путем сжигания топлива. В зависимости от способа сжигания и вида топлива различают топки сжигания твердого топлива в плотном и кипящем слое, пылевидного сжигания твердого топлива во взвешенном состоянии, циклонного сжи-  [c.84]


Обмуровка топочной камеры парового котла выполнена из шамотного кирпича, а внешняя обшивка из листовой стали. Расстояние между обшивкой и кирпичной кладкой равно 30 мм, и можно считать его малым по сравнению с размерами стен топки, Температу()а внешней поверхности обмуровки 1 = 127 С, а температура стальной обшивки 1г=50 с. Степень черноты шамота ш=0,8, а листовой стали  [c.67]

Задача 2.40. Определить теоретическую температуру горения топлива в топке котельного агрегата, работающего на донецком угле марки Д состава С =49,3% Н = 3,6% Sp = 3,0%> N =1,0% 0 = 8,3% = 21,8% И = 3,0Уо, если известны температура воздуха в котельной в = 30°С, температура горячего воздуха fi..B = 295° , коэффициент избытка воздуха в топке а = 1,3, присос воздуха в топочной камере Aot = 0,05, потери теплоты от химической неполноты сгорания топлива 3 = 0,5%, потери теплоты от механической неполноты сгорания топлива 4 = 3% и потери теплоты с физической теплотой шлака б 0,5%.  [c.55]

Задача 2.42. Определить, на сколько изменится теоретическая температура горения в топке котельного агрегата за счет подачи к горелкам предварительно подогретого воздуха, если известны температура воздуха в котельной /в = 30°С, температура горячего воздуха fjB = 250° , коэффициент избытка воздуха в топке Хг= 1,15, присос воздуха Б топочной камере Дат = 0,05  [c.57]

Задача 2.91. Определить мощность электродвигателя для привода вентилятора котельного агрегата, работающего на буром угле состава С = 41,6% Н = 2,8% Sp = 0,2% N = 0,7% 0 =11,7% =10,0% Pf = 33,0%, если коэффициент запаса подачи 1 = 1,1, расчетный расход топлива Вр-2,1 кг/с, коэффициент избытка воздуха в топке а = 1,25, присос воздуха в топочной камере Дат = 0,06, утечка воздуха в воздухоподогревателе До в = 0,04, температура холодного воздуха, поступающего в вентилятор, ,в = 20°С, расчетный полный напор вентилятора Я,=  [c.88]

Потеря теплоты от химической неполноты сгорания имеет место в том случае, если в дымовых газах появляются продукты неполного горения (СО, Нг и др.). Химическая неполнота сгорания увеличивается при недостаточном количестве воздуха в топке, недостаточно интенсивном перемешивании воздуха с горючими газами в топке, низкой температуре в топке или недостаточно развитом объеме топочной камеры.  [c.244]


Камерные топки для сжигания газообразного и жидкого топлив. Если сжигается газовое или жидкое топливо (или газовое вместе с жидким), то топочная камера выполняется с горизонтальным или слегка наклонным подом. Тепловое напряжение топочного объема при сжигании газового и жидкого топлив одно и то же, поэтому в камерных топках для сжигания газа можно сжигать и мазут. Форсунки для подачи и распыления жидкого топлива, а также газовые горелки располагаются фронтально, встречно или по углам топки.  [c.245]

В топках с ручным и механическим забросом топлива свежее топливо подается на слой горящего, а воздух поступает снизу под решетки. Структура горящего слоя при верхней загрузке топлива может быть представлена в виде трех зон (рис. 3.10) свежее топливо, горящий кокс и непосредственно на колосниковой решетке — шлак. В верхнем слое свежая порция топлива прогревается, подсушивается, из топлива выделяется влага, затем выделяются летучие, в основном сгорающие в топочной камере. На процесс подготовки топлива к горению затрачивается часть теплоты, выделяющейся при горении. Образующийся после выделения летучих кокс постепенно опускается, сгорает, а шлак стекает вниз, охлаждается, гранулируется, скапливается на колосниковой решетке и с нее удаляется. Шлак защищает решетку от перегрева и при условии регулярной шуровки слоя способствует равномерному распределению воздуха по слою. Воздух, подаваемый под слой топлива, называется первичным. Если воздух подается дополнительно, минуя слой топлива, непосредственно в топочную камеру, то такой воздух называется вторичным.  [c.248]

Процесс смешивания пыли с воздухом происходит в горелках. Топливная пыль, попадая в топку, нагревается, высушивается, газифицируется и сгорают летучие и кокс. Так как кокс горит во взвешенном состоянии и дольше, чем летучие, то объем топочной камеры при факельном горении значительно больше, чем при слоевом. Поэтому тепловое напряжение топочного объема топки для сжигания пылевидного топлива меньше, чем для слоевых топок. Процесс горения топлива в камерной топке интенсифицируют путем турбулизации аэропыли и использования горячего воздуха (90...400 °С).  [c.251]

Пылеугольные топки, как правило, полностью экранированы. Схема пылеугольной топки показана на рис. 3.13. Охлаждаемые водой топочные экраны, представляющие собой лучевоспринимающую поверхность топки, состоят из ряда труб, расположенных вдоль стен топочной камеры и включенных в самостоятельные циркуляционные контуры. Экранные трубы чаще бывают гладкими, но иногда экраны компонуются из плавниковых труб (труб с продольными ребрами — плавниками, расположенными на противоположных сторонах образующей поверхности трубы). Экраны располагают вплотную к обмуровке или отступая от стенки топочной камеры.  [c.251]

Рис. 3.13. Схема пылеугольной топки - пылеугольные горелки 2 - стены топочной камеры 3 - топочные экраны 4 - коллектор бокового экрана 5 - барабан котла 6 — опускные трубы переднего и заднего экранов Рис. 3.13. Схема <a href="/info/105058">пылеугольной топки</a> - <a href="/info/733">пылеугольные горелки</a> 2 - стены <a href="/info/105935">топочной камеры</a> 3 - топочные экраны 4 - коллектор бокового экрана 5 - <a href="/info/106808">барабан котла</a> 6 — <a href="/info/30289">опускные трубы</a> переднего и заднего экранов
Горелки внутри топочной камеры размещают на фронтальной стенке, встречно или по углам топки. По высоте топки горелки могут располагаться в один или несколько ярусов.  [c.252]

При жидком шлакоудалении температура в топочной камере должна поддерживаться на уровне, превышающем температуру плавления шлаков и гарантирующем их удаление из топки в жидком состоянии. Достоинство жидкого шлакоудаления состоит в том, что при этом способе золы улавливается значительно больше, чем при твердом шлакоудалении, когда существенная доля золы уносится дымовыми газами.  [c.253]


На котлоагрегате ТП-109 паропроизводительностью D = 670 т/ч энергоблока 210 МВт исследовались характеристики теплового излучения топки при сжигании кузнецкого каменного угля марки СС и отходов процесса обогащения донецкого каменного угля марки Г. Котел оборудован топкой с твердым шлакоудалением и имеет Т-образную компоновку с двусторонним отводом газов из топки. Топочная камера призматической формы разделена по всей высоте двухсветным экраном, делящим ее на две полутопки — переднюю и заднюю.  [c.108]

Расположение горелок в пылеугольной топке. Топочные камеры подразделяют по способу расположения горелок на камеры с фронтальным, встречным и угловым расположением, а по способу шлакоудаления — на камеры с твердым и жидким шлакоуда-лением.  [c.87]

В процессе сгорания топлива в топочной камере теплота может передаваться конвекцией и излучением нагреваемому материалу в печах или охлаждающим поверхностям в котлах. В результате газы охлаждаются, их энтальпия снижается. Этот процесс на рис. 16.1 изображается линией ав = = onst. Например, при охлаждении в топке продуктов сгорания до 1100 С и неизменном коэффициенте избытка воздуха ав=1,25 (линия АВ) их энтальпия снижается до 22,5МДж/м. В соответствии с уравнением (5.5) теплота, отдаваемая продуктами сгорания в процессе их охлаждения (в расчете на единицу количества сгоревшего топлива), равна уменьшению их энтальпии, т. е.  [c.129]

Химический недожог является прежде всего следствием недостатка воздуха в зоне горения или плохого его перемешивания с топливом. Eiro увеличению способствует также уменьшение температуры в топке при снижении нагрузки (оно уменьшает скорость реакции) и малое время пребывания топлива в топочной камере. Последнее наблюдается при форсировании топки, когда повышается скорость топливовоздушной смеси и реакции горения не успевают завершаться в пределах топки.  [c.132]

Испарительные поверхности. Парогенерирующие (испарительные) поверхности нагрева отличаются друг от друга в котлах различных систем, но, как правило, располагаются в основном в топочной камере и воспринимают теплоту излучения. Это — экранные трубы, а также устанавливаемый на выходе из топки небольших котлов конвективный пучок труб (см. рис. 18.1).  [c.149]

Обмуроика топочной камеры парового котла выполнена из шамотного кирпича, а внешняя обшивка — из листовой стали. Расстояние между обшивкой и кирпичной кладкой равно 30 мм, и можно считать его малым по сравнению с размерами стен топки.  [c.191]

Задача 2.38. Определить полезное тепловыделение в топке котельного агрегата, работающего на подмосковном угле марки Б2 состава С = 28,7% tf = 2,2% SS==2,7% N = 0,6% 0 = 8,6% А = 25,2% И = 32,0%, если известны температура топлива на входе в топку tj = 20° , температура воздуха в котельной в=30°С, температура горячего воздуха /, =300°С, коэффициент избытка воздуха в топке atr= 1,3, присос воздуха в топочной камере Aoj = 0,05, потери теплоты от химической неполноты сгорания топлива дз — 0,5%, потери теплоты от механической неполноты сгорания топлива д = Ъ%, объем рециркулирующих газов Грц=1,1 м /кг, температура рециркулирующих газов 0рц=1ООО°С и средняя объемная теплоемкость рециркулирующих газов с рд= 1,415 кДж/(м К).  [c.55]

Задача 2.39. Определить, на сколько изменится полезное тепловыделение в топке котельного агрегата за счет подачи к горелкам предварительно подогретого воздуха, если известны температура воздуха в котельной в = 30°С, температура горячего воздуха /г.в = 250°С, коэффициент избытка воздуха в топке (Хг=1,15, присос воздуха в топочной камере А(Хг = 0,05 и потери теплоты от химической неполноты сгорания топлива 93= 1%. Котельный агрегат работает на природном газе Саратовского месторождения состава С02 = 0,8% СН4 = 84,5% С2Нб = 3,8% СзН8=1,9% С4Н,0 = 0,9% С5Н,2 = 0,3% N2 = 7,8%.  [c.55]

Задача 2.41. Определить теоретическую температуру горения в топке котельного агрегата, работающего на природном газе состава СН4 = 92,2% С2Нб = 0,8% 41,0 = 0,1% N2 = 6,9%, если известны температура воздуха в котельной /,= 30°С, температура горячего воздуха fT.B = 250° , коэффищ1ент избытка воздуха в топке (Хг= 1,1, присос воздуха в топочной камере Аат = 0,04 и потери теплоты от химической неполноты сгорания топлива  [c.57]

Задача 2.46. Определить количество теплоты, переданное лучевоспринимающим поверхностям топки котельного агрегата, работающего на донецком каменном угле марки Т состава С -62,7% Н" = 3,1% S> -2,8% N" = 0,9% 0"=1,7% а = 23,8% ff = 5,0%, если известны температура воздуха в котельной /, = 30°С, температура горячего воздуха /гв = 300°С, коэффициент избытка воздуха в топке а =1,25, присос воздуха в топочной камере Аат = 0,05, температура газов на выходе из топки 0 = 11ОО°С, потери теплоты от химической неполноты сгорания топлива з = 0,6%, потери теплоты от механической неполноты сгорания 4 = 3%, потери теплоты в окружающую среду 5 = 0,5% и потери теплоты с физической теплотой шлака 96=0,4%.  [c.62]

Задача 2.47. Определить количество теплоты, переданное лу-чевоспринимающим поверхностям топки котельного агрегата, работающего на карагандинском угле марки К состава С = 54,7% Н = 3,3% S = 0,8% N = 0,8% 0 = 4,8% Л = 27,6% W = 8,0%, если известны температура воздуха в котельной /,=30°С, температура горячего воздуха г., = 350°С, коэффициент избытка воздуха в топке От= 1,3, присос воздуха в топочной камере А(Хт = 0,05, температура газов на выходе из топки 0т=1ООО°С, потери теплоты от химической неполноты сгорания топлива 3 = 0,6%, потери теплоты от механической неполноты сгорания топлива 4 = 3,0%, потери теплоты в окружающую среду qs = 0,5% и потери теплоты с физической теплотой шлака  [c.64]


Задача 2.48. Определить количество теплоты, переданное лу-чевоспринимающим поверхностям топки котельного агрегата, работающего на природном газе состава С02 = 0,2% СН4 = 97,9% С2Н4 = 0,1% N2=1,8%, если известны температура воздуха в котельной /в = 30°С, температура горячего воздуха /г.в = 230°С, коэффициент избытка воздуха в топке а.,= 1,1, присос воздуха в топочной камере АОт = 0,05, температура газов на выходе из топки 0 = 1ООО°С, потери теплоты от химической неполноты сгорания топлива дз = 1% и потери теплоты в окружающую среду 5=1,0%.  [c.64]

Задача 2.50. Определить количество теплоты, переданное лу-чевоспринимающим поверхностям топки котельного агрегата, работающего на донецком угле марки Д с низшей теплотой сгорания QI—19 453 кДж/кг, если известны температура воздуха в котельной /в = 30°С, температура горячего воздуха fr, = 295° , коэффициент избытка воздуха в топке 1 = 1,3, присос воздуха в топочной камере Ааг = 0,05, теоретически необходимый объем воздуха F° = 5,17 м /кг, энтальпия продуктов сгорания / = = 12 160 кДж/кг, потери теплоты от химической неполноты сгорания топлива 9з = 0,7%, потери теплоты от механической непо-  [c.64]

Задача 2.51. Определить лучевоспринимающую поверхность нагрева топки котельного агрегата паропроизводительностью D — 4,09 кг/с, работающего на природном газе Ставропольского месторождения с низшей теплотой сгорания 6 = 35 621 кДж/м , если известны давление перегретого пара = 4 МПа, температура перегретого пара r = 425° , температура питательной воды в=130°С, величина непрерывной продувки Р=3%, теоретически необходимый объем воздуха F =9,51 м /м , кпд котлоаг-регата (брутто) >/ р=90%, температура воздуха в котельной te = 30° , температура горячего воздуха гв = 250°С, коэффициент избытка воздуха в топке о =1,15, присос воздуха в топочной камере Aotj = 0,05, теоретическая температура горения топлива в топке 0т = 2О4О°С, температура газов на выходе из топки б = =1000 С, энтальпия продуктов сгорания при в 1 — = 17 500 кДж/м , условный коэффициент загрязнения С = 0,65, степень черноты топки Дт = 0,554, расчетный коэффициент, зависящий от относительного местоположения максимума температуры в топке. Л/=0,44, потери теплоты от химической неполноты сгорания топлива q = 1% и потери теплоты в окружающую среду 95=1,0%.  [c.65]

Задача 2.52. Определить лучевоспринимающую поверхность нагрева топки котельного агрегата паропризводительностью D= 13,9 кг/с, работающего на каменном угле с низшей теплотой сгорания Ql = 25 070 кДж/кг, если известны давление перегретого пара />п.п = 4 МПа, температура перегретого пара /п = 450°С, температура питательной воды /пв=150°С, величина непрерывной продувки Р=4%, теоретически необходимый объем воздуха F° = 6,64 м /м , кпд котлоагрегата (брутто) >/ а = 87%, температура воздуха в котельной /в = 30°С, температура горячего воздуха в = 390 С, коэффициент избытка воздуха в топке 0 = 1,25, присос воздуха в топочной камере Лат = 0,05, теоретическая температура горения тогшива в топке бт = 2035 С, температура газов на выходе из топки 0 = 1О8О С, условный коэффициент загрязнения С = 0,6, степень черноты топки = 0,546, расчетный коэффициент, зависящий от относительного местоположения максимума температуры в топке, М=0,45, потери теплоты от химической неполноты сгорания топлива з=1,0%, потери теплоты от механической неполноты сгорания топлива 174 = 3% и потери теплоты в окружающую среду = 1 %.  [c.66]

Задача 2.77. Определить количество теплоты, воспринятое воздухом в воздухоподогревателе котельного агрегата, работающего на природном газе Ставропольского месторождения состава С02 = 0,2% СН4 = 98,2% 02 6 = 0,4% СзН8 = 0Л% С4Ню = 0,1% N2=1,0%, если известны температура воздуха на входе в воздухоподогреватель , = 30°С, температура воздуха на выходе из воздухоподогревателя г = 180°С, коэффициент избытка воздуха в топке Ог=1,15, присос воздуха в топочной камере Aoi = 0,05 и присос воздуха в воздухоподогревателе Аавп = 0,06.  [c.79]

Задача 2.78. Определить энтальпию продуктов сгорания на выходе из воздухоподогревателя котельного агрегата, работающего на природном газе Саратовского месторождения, если известны температура воздуха на входе в воздухоподогреватель /в = 30°С, температура воздуха на выходе из воздухоподогревателя /j=170° , теоретически необходимый объем воздуха V° = 9,52 м /м , коэффициент избытка воздуха в топке оц = 1,15, присос воздуха в топочной камере Aol, = 0,05, присос воздуха в воздухоподогревателе Aagn=0,06, энтальпия продуктов сгорания на входе в воздухоподогреватель 1 = 1610 кДж/м и потеря теплоты в окружающую среду qs = 1 %.  [c.79]

Задача 2.79. Определить энтальпию продуктов сгорания на выходе из воздухоподогревателя котельного агрегата работающего на карагандинском угле марки К состава С =54,5% Н = 3,3% SS = 0,8% N" = 0,8% 0" = 4,8% Л = 27,6% И = 8,0%, если известны температура воздуха на входе в воздухоподогреватель t = 30° , температура воздуха на выходе из воздухоподогревателя =177°С, коэффициент избытка воздуха в топке От =1,3, присос воздуха в топочной камере Аат = 0,05, коэффициент избытка воздуха за воздухоподогревателем авп=1,45, присос воздуха в воздухоподогревателе Аавп = 0,05, температура газов на входе в воздухоподогреватель 0вц=45О°С и потери теплоты в окружающую среду qs=l %.  [c.79]

Задача 2.81. Определить конвективную поверхность нагрева воздухоподогревателя котельного агрегата паропроизводитель-ностью D — 5,9 кг/с, работающего на донецком угле марки Т со-сгава = 62 7% H" = 3,l /o SS = 2,8% N = 0,9% 0 =1,7% = 23,8% Ц =5,0%, если известны давление перегретого пара Ра.п- Л МПа, температура перегретого пара / = 275°С, температура питательной воды 100°С, кпд котлоагрегата (брутто) = величина непрерывной продувки Р=4%, температура воздуха на входе в воздухоподогреватель /, = 30°С, температура воздуха на выходе из воздухоподогревателя / = 170°С, коэффициент избытка воздуха в топке tj=l,3, присос воздуха в топочной камере Аат = 0,05, присос воздуха в воздухоподогревателе A t a = 0,06, коэффициент теплопередачи в воздухоподогревателе а = 0,0178 кВт/(м К), температура газов на входе в воздухоподогреватель 0вп = 4О2°С, температура газов на выходе из воздухоподогревателя 0 =ЗОО°С и потери теплоты от механической неполноты сгорания топлива 4 = 4%.  [c.80]

Задача 2.88. Определить расчетную подачу вентилятора котельного агрегата паропроизводительностью 1)=13,8 кг/с, работающего на природном газе с низщей теплотой сгорания 2,= = 35 700 кДж/м , если давление перегретого пара />пи = 4 МПа, температура перегретого пара /пд = 430°С, температура питательной воды /пв=130°С, кпд котлоагрегата (брутто) = теоретически необходимый объем воздуха F° = 9,48 м /м , коэффициент запаса подачи / i=l,05, коэффициент избытка воздуха в топке От =1,15, присос воздуха в топочной камере А(Хт = 0,05, утечка воздуха в воздухоподогревателе Да зд-—0,04, температура холодного воздуха, поступающего в вентилятор, /хв = 20°С и барометрическое давление воздуха /2g = 98 10 Па.  [c.87]


Задача 2.92. Определить мощность электродвигателя для привода вентилятора котельного агрегата паропроизводитель-ностью D= 13,9 кг/с, работающего на подмосковном угле с низшей теплотой сгорания 2 =10 636 кДж/кг, если температура топлива на входе в топку 1. = 20°С, теплоемкость рабочей массы топлива с = 2,1 кДж/(кгК), давление перегретого пара /)пи = 4 МПа, температура перегретого пара fnn = 450° , температура питательной воды пв=150°С, кпд котлоагрегата (брутто) fj p=86%, теоретически необходимый объем воздуха V° — = 2,98 м /кг, коэффициент запаса подачи i=l,05, коэффициент избытка воздуха в топке t =l,25, присос воздуха в топочной камере Aotr = 0,05, утечка воздуха в воздухоподогревателе Да,п = 0,04, температура холодного воздуха, поступающего в вентилятор, j, = 25° , расчетный полный напор вентилятора Н = = 1,95 кПа, коэффициент запаса мощности электродвигателя 2=1,1, эксплуатационный кпд вентилятора rjl = 6lVa, барометрическое давление воздуха Лб = 98 10 Па и потери теплоты от механической неполнотьь сгорания топлива 94 = 4%.  [c.89]

Задача 2.93. Определить расчетный полный напор вентилятора котельного агрегата, работающего на фрезерном торфе состава С = 24,7% Н = 2,6% N =1,1% 0 =15,2% = 6,3% И = 50,0%, если расчетный расход топлива Вр = = 4,6 кг/с, коэффициент запаса подачи =1,05, коэффициент избытка воздуха в топке t,= l,25, присос воздуха в топочной камере Аа = 0,05, утечка воздуха в воздухоподогревателе Аавп = = 0,045, температура холодного воздуха, поступающего в вентилятор, 1в = 20°С, мощность электродвигателя для привода вентилятора JV = 60 кВт, коэффициент запаса мощности электродвигателя 2=1Д, эксплуатационный кпд вентилятора э = 60% и барометрическое давление воздуха Лб = 97 10 Па.  [c.89]

Задача 2.94. Определить расчетный полньш напор вентилятора котельного агрегата, работающего на буром угле с низшей теплотой сгорания Q =15 800 кДж/кг, если коэффициент запаса подачи 1 = 1,05, условный расход топлива Ву=1,45 кг/с, коэффициент избытка воздуха в топке 0 = 1,25, присос воздуха в топочной камере А(Хт = 0,05, теоретически необходимый объем воздуха V° = 4 м /кг, утечка воздуха в воздухоподогревателе Аа,п = = 0,04, температура холодного воздуха, поступающего в венку  [c.89]

При расчете теплообмена в топке важной характеристикой является теоретическая температура горения, под которой понимают адиабатическую температуру горения при существующем коэффициенте избытка воздуха в топке. Теоретическая температура горения — это та, которую можно получить при отсутствии теплообмена в топке, она является максимально возможной при сжигании данного топлива. Вследствие интенсивного лучистого теплообмена в топочной камере температура продуктов сгорания, естественно, всегда ниже. Наряду с теоретической температурой горения важным параметром, характеризующим работу топки, является температура газов, покидающих топку. Эта температура должна быть ниже размягчения золы данного топлива. Для большинства отечественных твердых топлив она составляет 1100°С. Снижение температуры в топке до этого значения достигается чаще всего установкой дополнительных трубчатых теплообменных поверхностей, которые называюгся экранами.  [c.245]

Основные типы слоевых топок для сжигания твердых топлив. Топочные устройства для слоевого сжигания топлива просты в эксплуатации, пригодны для различных топлив, не требуют больших объемов топочной камеры и большого расхода энергии на собственные нужды. Обслуживание топок со слоевым сжиганием включает операции подачи топлива в топку, шурование (перемешивание) топлива и шлакоудаление. По методу обслуживания и степени механизации этих операций топки подразделяются на топки (рис. 3.9) а — с ручным обслуживанием б — полумеханизированные в — механизированные.  [c.248]

Основные колонны каркаса располагают по углам топочной камеры и конвективной шахты, а промежуточные вдоль стен. Число последних зависит от мош,ности котла. При близком расположении к топке конвективной шахты или на облегченных конструкциях конвективной шахты внутренние колонны не ставят, как например, на котлах (Пп = 1000—25—545/545 КТ (ТПП-210А).  [c.129]


Смотреть страницы где упоминается термин Топка (топочная камера) : [c.116]    [c.142]    [c.133]    [c.148]    [c.154]    [c.478]    [c.79]    [c.80]    [c.87]    [c.87]   
Теплотехника (1980) -- [ c.0 ]



ПОИСК



Образование и методы подавления окислов азота в топках паровых котлов. ИЗ Исследование процесса горения в топочной камере

Рабочие процессы механических топок Работа слоя и топочной камеры

Расчет топочной камеры С ширмами, включенными в активный объем топки

Топка

Топочная камера



© 2025 Mash-xxl.info Реклама на сайте