Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Планетарные Определение сил, действующих

Поскольку две последние силы являются функцией первой, то задача по определению сил, действующих в зацеплениях колес планетарного механизма, сводится к установлению величины и направления окружного усилия.  [c.328]

Расчет замкнутых планетарных передач начинают с определения силы, действующей на сателлит со стороны звена, не входящего в цепь замыкания. На рис. 211 показано направление окружных сил, приложенных к звеньям такой передачи. Расчет этих сил  [c.330]


Рис. 4.13. Определение сил, действующих на звенья планетарной передачи, по Рис. 4.13. Определение сил, действующих на <a href="/info/159192">звенья планетарной</a> передачи, по
Рис. 4.14. Определение сил, действующих на звенья планетарной передачи, по схеме рис. 4.4 Рис. 4.14. Определение сил, действующих на <a href="/info/159192">звенья планетарной</a> передачи, по схеме рис. 4.4
Для определения КПД планетарного механизма по второму методу примем, что все подвижные звенья уравновешены и движутся равномерно. Постоянные моменты внешних сил, действующих на звенья 1, Н д 3, обозначим через М, Мн и Мз (опорный момент, действующий со стороны основания или фундамента на стойку). Моменты сил движущих считаем положительными, а моменты сил сопротивления отрицательными. Иначе, момент сил считается положительным, если его направление совпадает с направлением угловой скорости.  [c.207]

Силовой расчет планетарных передач. Он сводится к определению реакций в кинематических парах (т. е. определению усилий, действующих на зубья, на опоры и на водило). Реакции определяются из условия статического равновесия звеньев. Центробежные силы инерции от переносного движения сателлитов не учитываются, поскольку они влияют только на реакцию в подшипнике сателлита.  [c.116]

Для определения сил в зацеплениях и в опорах планетарных передач всех трех типов (простых планетарных, дифференциальных и замкнутых дифференциальных) рассматривают поочередно равновесие каждого звена под действием внешних нагрузок. Трение при этом не учитывают. Расчет начинают со звена, где известен внешний момент, например со звена а  [c.159]

Для планетарных механизмов можно предложить правило, пригодное также для решения вопроса о том, по какую сторону круга трения проводить реакцию в подшипнике или шарнире, а именно для определения направления смещения следует вектор силы, действующей на данное звено, повернуть на 90° в сторону относительного вращения этого звена.  [c.263]


Определение сил и моментов, действующих в планетарных передачах. В планетарных передачах сателлиты расположены на равных расстояниях друг от друга, поэтому центробежные силы инерции взаимно уравновешиваются. Применительно к однорядной передаче схема нагружения показана на рис. 5.29. На редуктор действуют внешние моменты Л1а на быстроходном центральном валу и Ма на тихоходном валу  [c.152]

Для определения силовых зависимостей в планетарном механизме используют условие равновесия сил, действующих на сателлит (см. рис. 5.12).  [c.72]

Рис 14.9. К определению коэффициента полезного действия планетарного зубчатого механизма а) схема механизма 6) отдельные звенья с приложенными к ним силами  [c.319]

Порядок расчета на прочность зацеплений планетарных передач во многом определяется характером технического задания и выбранной схемой механизма. Если размеры передачи заранее не ограничены, то расчет следует начинать с определения межосевого расстояния пары колес с наружным зацеплением. Для передач дифференциального ряда этого вполне достаточно, так как при одинаковых действующих силах и модуле внутреннее зацепление прочнее наружного. Для таких передач расчет пары колес —Ь иногда выполняют как проверочный или с целью подбора материала коронного колеса. В передачах с двухвенцовым сателлитом (см. рис. 206) модули пар сопряженных колес могут быть различными, поэтому зацепление сателлит — коронное колесо рассчитывают всегда.  [c.339]

Выполним силовой расчет двухрядного планетарного редуктора <рис. 356, а, б). Пусть величина и направление угловой скорости <05 ведущего звена — водила 5 заданы. Ведомым звеном является колесо 5, нагруженное моментом М3 сил сопротивления. Для определения направлений угловой скорости щ колеса 3, уравновешивающего момента Му и внешнего момента М3 строим картину скоростей (рис. 356). Рассмотрим ведомое звено — колесо 3, которое находится в равновесии под действием заданного момента Mg и ре-  [c.371]

На сектор планетарного механизма действуют внешние силы упругая сила пружины, сила реакций в кинематических парах и сила трения. Изучение этих сил начнем с определения характеристики пружины при условии отсутствия отрыва сектора от ролика (сателлита). Определив эту характери-  [c.78]

Попытки учета сил трения при динамических расчетах, основанные на упрощенных представлениях, равно как и пренебрежение потерями на трение, часто приводят к значительным ошибкам. Последнее особенно существенно при анализе кинематических цепей, составленных из винтовых, червячных, планетарных и других механизмов, отличающихся при определенных параметрах значительными потерями на трение и резко выраженной зависимостью коэффициента полезного действия от направления передачи вращающих моментов.  [c.226]

Определение усилий в зацеплениях и опорах принято вести из условия поочередного рассмотрения равновесия каждого звена под действием сил, являющихся внешними для данного звена. Силы трения при этом не учитывают. На рис. 42, а представлена схема усилий в одноступенчатой косозубой планетарной передаче с двумя сателлитами.  [c.79]

При нсследозэнии свободных и вынужденных колебаний планетарных редукторов, в соответствии с методов динамических податливостей, в местах рассечения системы на простые подсистемы к каждой из подсистем прикладывают единичные возмущающие силы, изменяющиеся с определенной частотой, и выполняют расчег вынужденных колебаний каждой из подсистем отдельно под действием этих возмущающих сил. После этого составляют уравнения совместности деформаций для каждой упругой связи, по которым рассекали систему на простые подсистемы.  [c.96]

Одним из методов сшшеиня вибраций, передаваемых на корпусные детали планетарных редукторов, является формирование определенного вида движения Дета1ей под действием приложенных к ним во" мущающих сил, возможность которого обусловлена тем, что на зубчатые колеса планетарных редукторов действует более одной возмущающей силы. Это обстоятельство, с учетом симметричного расположения в пространстве возмущающих сил, позволяет добиваться нужного вида движения детали соответствующим вы ором сдвига фаз между этими силами.  [c.114]


Рис. 526. К определению ко9ффициента полезного действия планетарного механизма о) схема механизма б) отдельные звенья с приложенными к ним силами. Рис. 526. К определению ко9ффициента полезного действия <a href="/info/1930">планетарного механизма</a> о) <a href="/info/292178">схема механизма</a> б) отдельные звенья с приложенными к ним силами.
Основной особенностью конструкции планетарных передач являются симметрично расположенные одинарные или сложные сателлиты, работающие параллельно и вращающиеся как относительно своих осей, так и вместе с ними относительно центральной оси. Отсюда вытекает ряд частных особенностей, учитываемых при расчете степень равномерности распределения нагрузки по сателлитам определение относительных чисел оборотов колес при расчете зубчатых зацеплений и подшипников обеспечение, кроме условий соосности, условия сборки и соседства при определении числа зубьев колес многосателлитных передач возможность циркуляции мощности в замкнутых контурах действие центробежных сил на узлы опор сателлитов у быстроходных передач односторонняя или двухсторонняя работа зубьев сателлитов в зацеплении с солнечным колесом и эпициклом даже при неизменном направлении вращения валов число полюсов зацепления при определении нагрузки в них и определении числа циклов нагружения разгрузка опор центральных колес благодаря уравновешиванию радиальных усилий при выборе коэффициента концентрации напряжений лучшее распределение нагрузки по длине зуба из-за меньшего изгиба валов, меньшей деформации картера и меньшего консольного действия сил при внутреннем зацеплении.  [c.123]


Смотреть страницы где упоминается термин Планетарные Определение сил, действующих : [c.116]    [c.364]   
Проектирование механических передач Издание 4 (1976) -- [ c.0 ]



ПОИСК



К п планетарных

Определение сил, действующих на вал

Планетарные К. п. д. — Определение



© 2025 Mash-xxl.info Реклама на сайте