Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Передача тепла теплопроводностью нестационарная

Для передачи тепла теплопроводностью характерны два случая передача тепла при стационарных и нестационарных тепловых потоках. С первым случаем приходится сталкиваться при расчете ограждений и теплоизолирующих покрытий, потери тепла через которые должны быть сведены к минимуму, а со вторым — при нагреве и охлаждении изделий в любом технологическом процессе.  [c.117]

Отвлекаемся от 1) продольной передачи тепла теплопроводностью, 2) тепловой диссипации, 3) теплоты сжатия и 4) явной нестационарности. Получаем в этом приближении  [c.278]


Различают два основных случая передачи тепла теплопроводностью — в нестационарном (неустановившемся) потоке и в стационарном (установившемся) потоке тепла.  [c.122]

При рассмотрении передачи тепла теплопроводностью различают две разновидности температурного состояния тел стационарное и нестационарное.  [c.64]

НЕСТАЦИОНАРНАЯ ПЕРЕДАЧА ТЕПЛА ТЕПЛОПРОВОДНОСТЬЮ  [c.29]

Решение вопросов, связанных с передачей тепла в нестационарных условиях, сводится к интегрированию дифференциальных уравнений теплопроводности (1) и (2), приведенных в главе I. Решение этих уравнений в общем виде представляет задачу более сложную, чем решение дифференциальных уравнений температурных полей в стационарных условиях теплопередачи.  [c.96]

Уравнение (22-10) называется дифференциальным уравнением теплопроводности, или уравнением Фурье, для трехмерного нестационарного температурного поля при отсутствии внутренних источников тепла. Оно является основным при изучении вопросов нагревания и охлаждения тел в процессе передачи теплоты теплопроводностью и устанавливает связь между временным и пространственным изменениями температуры в любой точке поля.  [c.354]

Задача по определению нестационарного пространственного температурного поля в различных твердых телах относится к числу сложных в связи с тем,что известный математический аппарат не дает возможности получить решение уравнения теплопроводности при произвольных начальных и несимметричных граничных условиях третьего рода. В практике обычно задача усложняется тем, что и температура окружающей среды, и коэффициенты теплоотдачи между средой и телом в процессе передачи тепла изменяются, причем эти изменения зачастую происходят по сложным закономерностям. Кроме того, теплофизические параметры теплопроводящей среды также изменяются в процессе теплового воздействия, а среда является анизотропной.  [c.296]

Данная книга ни в коей мере не заменяет и не дублирует существующий справочник по теплотехнике и теплопередаче, так как, во-первых, методически она построена по иному принципу и, во-вторых, в основном рассматривает взаимосвязанные процессы тепломассопереноса и математическую теорию переноса, которая в одинаковой мере применима к переносу как тепла, так и массы вещества. Вследствие этого вопросы передачи тепла излучением, задачи чистого теплообмена и ряд других разделов теплопередачи в книге не рассматриваются. Большое внимание уделяется аналитической теории переноса тепла и массы, в частности нестационарным задачам теплопроводности (разд. 2), где путем введения обобщенных функций удалось одновременно описать одномерные температурные поля в телах классической формы, по-новому, в более простом виде, описать распространение температурных волн, дать обобщение регулярным режимам теплового нагрева тел и ряд других обобщений. На основе дальнейшего развития аналитической теории теплопроводности приведены последние работы по решениям системы дифференциальных урав-  [c.4]


Теплоотдача и диссипация энергии в пограничном слое должны быть связаны с теплоемкостью и теплопроводностью пластины. Изменение температуры пластины по времени обусловливает нестационарность пограничного слоя. Однако поскольку скоростное и температурное равновесие в пограничном слое устанавливается очень быстро, можно предположить его квазистационарным. Поскольку мы рассматриваем достаточно тонкую пластину, то при расчете можно пренебречь термическим сопротивлением по толщине пластины, однако необходимо учитывать локальную теплоемкость и передачу тепла за счет теплопроводности по длине пластины.  [c.330]

Поэтому данная книга ни в коей мере не заменяет и не дублирует существующий справочник по теплотехнике и теплопередаче, так как, во-первых, методически она построена по иному принципу и, во-вторых, в основном рассматривает взаимосвязанные процессы тепломассопереноса и математическую теорию переноса, которая в одинаковой мере применима к переносу как тепла, так и массы вещества. Вследствие этого вопросы передачи тепла излучением, задачи чистого теплообмена и ряд других разделов теплопередачи в книге не рассматриваются. Большое внимание уделяется аналитической теории переноса тепла и массы, в частности нестационарным задачам теплопроводности (разд. 2), где путем введения обобщенных функций удалось одновременно описать одномерные температурные поля в телах классической формы, по-новому, в более простом виде, описать распространение температурных волн, дать обобщение регулярным режимам теплового нагрева тел и ряд других обобщений. На основе дальнейшего развития аналитической теории теплопроводности приведены последние работы по решениям системы дифференциальных уравнений тепломассопереноса (разд. 6), подробно рассмотрены гиперболические уравнения диффузии тепла и массы с учетом конечной скорости распространения. Установлена связь этого нового направления в описании явлений тепломассопереноса с работами американской школы по диффузии массы в пористых средах.  [c.4]

Нестационарный процесс передачи тепла сложнее стационарного. При нестационарном тепловом режиме теплопроводность выражается дифференциальным уравнением второго порядка, решение которого в общем виде очень сложно и приводится в специальных курсах теплопередачи.  [c.70]

Нет сомнений в справедливости второй точки зрения в случае подавляющего преобладания лучистого обмена между частицами и термопарой над конвективным и кондуктивным. Однако если взять низкотемпературный псевдоожиженный слой и пренебречь также передачей тепла по проводникам термопары и количеством тепла, передаваемым от частиц к термопаре чисто контактным способом (минуя газовую фазу), то, по-видимому, незащищенная термопара будет измерять температуру среды. В этом распространенном в условиях лабораторных опытов случае все тепло, идущее к термопаре, будет передаваться к ней конвекцией и кондукцпей через прослойку среды. Рассмотрим квазистационарное состояние, когда режим работы псевдоожиженного слоя установился и погруженная в слой термопара указывает неизменную температуру, хотя частицы вокруг нее все время сменяются благодаря перемешиванию слоя и в зоне расположения термопары все время происходит теплообмен газа с этими сменяющимися частицами путем нестационарной теплопроводности. Чтобы исключить влияние флуктуаций неоднородности псевдоожиженного слоя, измерительная система с термопарой имеет достаточную инерционность. В условиях подобного квазиста-ционарного режима тепловой поток через спай термопары будет иметь постоянную среднюю величину, а значит, будет неизменным и температурный перепад между поверхностью горячего спая и обтекающей его средой. Величина потока тепла будет обусловлена соприкосновением сравнительно большого горячего спая с зонами раз-258  [c.258]

При вы сокоинтен сивных нестационарных тепловых процессах, как уже отмечалось ранее, гиперболическое уравнение энергии более корректно описывает процесс передачи тепла, чем параболическое уравнение теплопроводности. Решение гиперболического нелинейного уравнения теплопереноса представляет определенные трудности, которые оказываются труднопреодолимыми, особенно в случае сложных и переменных краевых условий. Применение электрических моделей с сосредоточенными параметрами может оказаться полезным при решении этого уравнения.  [c.313]


В основных элементах СОТР передача тепла осуществляется продольным конвективным переносом при движении жидкости, а также поперечной теплопроводности в пределах части пограничного слоя и окружающих поток конструктивных элементов. На границе потока и стенки могут одновременно существовать три вида процессов передачи тепла — конвекцией, теплопроводностью, излучением, а также фазовые превращения. Рассмот-реннъю в предыдущих разделах математические модели учитывают в основном емкостные свойства и перенос тепла за счет движения жидкости, а поперечная передача тепла определяется стационарным коэффициентом теплоотдачи. При изученш динамических режимов это может привести к определенным ошибкам в расчетах. Для нестационарных режимов нельзя рассматривать ко-  [c.162]


Смотреть страницы где упоминается термин Передача тепла теплопроводностью нестационарная : [c.30]    [c.90]   
Теплопередача при низких температурах (1977) -- [ c.29 , c.33 ]



ПОИСК



Нестационарная теплопроводность

Нестационарность

Передача тепла

Передача тепла теплопроводностью



© 2025 Mash-xxl.info Реклама на сайте