Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Предел выносливости алюминиевых сварных соединений

Испытания на усталость соединений листовых конструкций. Полученных контактной точечной сваркой из сплавов ВТ1-0 и ОТ4-1, сталей и алюминиевых сплавов, показали близость предела выносливости стали и титановых сплавов [162]. По данным этой работы, уровень усталостной прочности сварных соединений определяется их конструктивным оформлением, при этом вид материала имеет меньшее значение.  [c.157]


В работе [86] была исследована циклическая прочность двух типов сварных листовых соединений аргонодуговая сварка встык с присадкой и контактная шовная сварка встык с двусторонними накладками. Испытание образцов велось плоским симметричным изгибом. Разрушение образцов происходило по месту сплавления металла шва с основным металлом, т. е. по месту конструктивного концентратора напряжений. Для того чтобы оценить раздельно роль внешних концентраторов и роль самой сварки ( внутренний концентратор) на усталостную прочность сварных соединений титана, были определены пределы выносливости образцов без усиления и накладок, которые перед циклическим нагружением срезались. В этих испытаниях определено снижение циклической прочности только в результате действия структурных или внутренних концентраторов. Как видно из рис. 69, на котором представлены основные результаты работы, предел выносливости таких образцов оказался еш,е более низким, чем у образцов с усилением эффективный коэффициент внутренней концентрации для аргонодуговой и контактной сварки оказался соответственно 1,74 и 3,25. Все образцы этих серий разрушались по шву. Сопоставление усталостной прочности сварных соединений титана с подобными соединениями других металлов (стали, алюминиевые сплавы) показало, что они имеют близкие значения отношений предела усталости сварного соединения и основного металла. Эксперименты показали, что пределы усталости стыковых соединений титановых листов при изгибе, выполненных ручной аргонодуговой сваркой и контактной сваркой, составляют соответственно 77 и 65% от усталостной прочности основного металла причем снижение предела выносливости идет в основном за счет внутренних структурных дефектов сварного шва.  [c.150]

Влияние пор и шлаковых включений на предел выносливости зависит также от рода материала. Например, в сварных соединениях алюминиевых сплавов включения и поры оказывают довольно существенное влияние на несущую способность изделий. В конструкциях из низкоуглеродистых сталей роль этих дефектов незначительна.  [c.92]

При проектировании сварных узлов из алюминиевых сплавов, работающих при переменных нагрузках, учет концентрации напряжений особенно важен. Экспериментально установлено, что для большинства алюминиевых сплавов предел выносливости составляет (0,25 0 0) Од. Эффективные коэффициенты концентрации напряжений при переменных нагрузках для различных видов сварных соединений приведены в табл. 2.  [c.262]


При сварке легированных термически обработанных сталей, например хромансиля и др., наименьшую прочность при переменных нагрузках в сварном соединении имеет основной металл в зоне отпуска. Аналогичное понижение предела выносливости в зоне отпуска наблюдается в сварных соединениях термически обработанных цветных сплавов (алюминиевых, магниевых и др.). Разрушение, как правило, происходит около стыковых швов при пониженных значениях предела выносливости, по сравнению с пределом выносливости основного металла в термически обработанном состоянии. Мероприятием, повышающим прочность сварных соединений легированных сталей при переменных нагрузках, является применение термической обработки изделия. Однако термическая обработка часто не восстанавливает полностью прочность элемента, которая была до сварки, но все же частично восстановление происходит. Разработан также способ повышения прочности при переменных нагрузках для соединений  [c.235]

Методы повышения прочности сварных соединений при переменных нагрузках. При сварке легированных термически обработанных сталей, например хромансиля и др., наименьшую прочность при переменных нагрузках в сварном соединении имеет основной металл в зоне отпуска. Аналогичное понижение предела выносливости в зоне отпуска имеет место в сварных соединениях термически обработанных цветных сплавов (алюминиевых, магниевых и др.). Разрушение, как правило, происходит около стыковых швов при пониженных значениях предела выносливости, по сравнению с пределом выносливости основного металла в термически обработанном состоянии. Мероприятием, повышающим прочность сварных соединений легированных сталей при переменных нагрузках, является применение термической обработки зоны сварки. Термическая обработка часто полностью не восстанавливает прочность элемента, которая была до сварки, но все же частичное восстановление достигается. Разработан также способ повышения прочности при переменных нагрузках для соединений из малоуглеродистых сталей. Для повышения прочности сварные соединения подвергаются поверхностной механической обработке обкатке роликами или, что является более простым и удобным, обдувке дробью, или обработ-  [c.244]

Наиболее высокие показатели усталостной прочности дают сварные соединения в стык из алюминиевых сплавов, которые лишь незначительно уступают основному металлу. Пределы выносливости соединений с угловыми швами, а также при наличии односторонних накладок оказались значительно ниже, чем у стыковых.  [c.529]

Обработка соединений после сварки. Проковку шва применяют в промышленной практике для уплотнения металла шва и его поверхностного упрочнения ручным алюминиевым молотком или пневмомолотком. При этом повышается предел выносливости сварных соединений при циклических нагрузках.  [c.60]

Усталостная прочность сварных соединений. Усталостная прочность сварных соединений опреде 1яется глaвньJM образом тремя факторами конструктивным оформлением сварного соединения, качеством металла шва и околошовной зоны и наличием сварочных напряжений. Фактор конструктивного оформления—общий для сплавов различной основы, поэтому его влияние подобно влиянию на а сварных соединений стальных или алюминиевых конструкций. Исследованием усталостной прочности металла шва и околошовной-зоны установлена большая ее зависимость от качества присадочного материала, тщательности защиты от поглощения газов из воздуха расплавленным и нагретым металлом во время процесса сварки, наличия в сварном шве различного рода дефектов (непроваров, пористости и пр.) [ 148]. При определении пределов выносливости сварного соединения усиление шва механически удаляли, чтобы.в чистом виде вьшвить усталостную прочность сварного соединения по сравнению с таковой основного металла.  [c.156]


По данным работ [12, 13] непровары при глубине 20—30% от всего сечения снижают предел выносливости сварных соединений из сталей ЗОХГСА, 12Х18Н9Т, алюминиевого сплава Д1бТ в 2—3 раза. По данным работы [17] влияние непровара зависит от того, в какую зону остаточной напряженности он попадает. Если непровар в зоне сжимающих остаточных напряжений, то предел выносливости снижается значительно меньше, чем при непроваре в зоне растягивающих остаточных напряжений. Непровары нельзя допускать в сварных соединениях, работающих при переменных нагрузках [17].  [c.380]

По иному на сварные конструкции влияют норы. Многие исследователи считают, что до некоторого предела наличие пор в металле шва практически не снижает его статическую прочность. Для нпзкоуглероди-стых сталей этот предел составляет около 10 % площади поперечного сечения шва, для перлитных сталей — 6—8%, для алюминиевых сплавов — 3,6%. Однако поры снижают не только статическую прочность сварного соединения, а, являясь концентраторами напряжений, могут вызвать снижение выносливости сварного соединения. В этом случае особенно опасным является наличие пор в зонах растягивающих остаточных напряжений. Растягивающие остаточные напряжепия особенно велики в поверхностных слоях металла, поэтому опасность разрушения возрастает, если поры будут расположены близко к поверхности. Но сварные соединения могут разрушаться и из-за наличия внутренних пор, если они расположены в зонах высоких растягивающих остаточных напряжений.  [c.241]

Пределы выносливости сварных соединений различных типов алюминиевых сплавов АМгб  [c.64]

Исследования В. И. Труфякова [29] показали, что для сварных соединений из углеродистых, низколегированных и высокопрочных сталей частота нагружения не влияет на величину неограниченного предела выносливости. Аналогичный вывод можно сделать по данным работ [7, 17, 30, 34] и для алюминиевых сплавов, что подробнее будет рассмотрено ниже.  [c.380]

Трудно установить корреляцию между такими механическими свойствами металла, как предел прочности, текучести, пластичность, ударная вязкость и чувствительность к дефектам. Например, аустенитиые стали обладают высокими пластическими и вязкими свойствами. Однако сварные соединения аустенитных сталей очень чувствительны к концентраторам напряжений. Напротив, стали СтЗ и 20 обладают относительно пониженной чувствительностью к концентраторам. Высокую чувствительность к концентраторам имеют высокопрочные стали, например 20 и ЗОХГСНА, ряд алюминиевых и титановых сплавов. Чувствительность сварных соединений этих сталей и сплавов проявляется не только в отношении дефектов технологического процесса в форме непроваров, трещин, включений, но и в отношении нерациональных типов сварных соединений. Например, предел выносливости титанового сплава при симметричном цикле нередко составляет более 30 кгс/мм , при пределе прочности 90—100 кгс/мм и более. В то же время предел выносливости при тех же характеристиках цикла точечных соединений падает до 3—3,5 кгс/мм . Далеко не все материалы обладают таким катастрофическим падением предела выносливости в результате наличия концентраторов.  [c.93]

Предел выносливости сварных соединений 15, 65. 68. 71, 92, 1 17 Предельное состопние конструкции 98 Прибавка к толщине металла на корроз гон-ную среду 223 Принципы проектирования сварных конструкций 5 Припуски на механическую обработку сварных соединении 25 Прогиб балки статический 238, 246 Проект технический 17 Проектирование изделий из алюминиевых сплавов 8  [c.373]

На фиг. 140 приведены сводные результаты определения предела выносливости основного металла и сварных соединений в стык из малоуглеродистых, легированных сталей и алюминиевого сплава марки Д16Т при симметричных циклах нагружений. Вертикальной штриховкой указаны величины предела прочности, наклонной— пределы выносливости сварных соединений. Не заштрихованы показатели предела выносливости основного металла. Из этих данных видно, что относительно высокие показатели имеют стали малоуглеродистые (Ст. 3, сталь 37), сталь 20, ЗОХМА. Аустенитные стали, высокопрочная сталь марки ЗОХГСНА, алюминиевый сплав марки Д16Т имеют низкие значения a а в-  [c.244]

При действии переменных нагрузок следует отдельно рассматривать прочность швов и прочность прилегающего к ним основного металла. В большинстве случаев в стыковых соединениях разрушение наступает в околошовных зонах. Это объясняется наличием в них концентраторов напряжений от швов с необработанной поверхностью, а также разупрочнений легированных или закаленных сталей в результате теплового действия сварочной дуги. На рис. 4.5 приведены усталостные характеристики сталей и алюминиевого сплава Д16Т и их сварных соединений. Высокие отношения пределов выносливости соединений к пределам прочности основного металла имеют низкоуглеродистые стали. Аустенит-ные стали, высокопрочная сталь марки ЗОХГСНА, сплав марки Д16Т имеют низкие значения 0-1/03 и 011/0 .  [c.138]

Даже небольшой непровар корня шва образует надрез и концентрацию напряжений, что может существенно снижать прочность стыковых соединений при переменных нагрузках. Влияние непровара на уменьшение усталостной прочности зависит от рода материала. Очень чувствительны к непроварам сварные соединения из аустенитных сталей типа 12Х18Н9Т и титановых сплавов. На рис. 4.6 показано изменение пределов выносливости сталей и алюминиевых сплавов в зависимости от глубины непровара.  [c.139]


Уже на первоначальном этапе исследований при переменных нагрузках было показано суц] ественное влияние дефектов на усталостную прочность сварных соединений. Так, для стыковьк соединений стали СтЗ с У-образной разделкой кромок даже незначительный по величине непровар уже заметно снижает предел выносливости соединения [2111. Еще резче это проявляется применительно к высокопрочной стали ЗОХГСА, закаленной на 1600 МПа, аустенитной 1Х18Н9Т, алюминиевому сплаву Д16Т (рис.9.1.2) [213].  [c.298]


Смотреть страницы где упоминается термин Предел выносливости алюминиевых сварных соединений : [c.183]    [c.145]   
Справочник машиностроителя Том 6 Издание 2 (0) -- [ c.4 , c.4 , c.16 , c.162 ]



ПОИСК



Алюминиевые выносливость

Выносливости предел

Выносливость

Выносливость соединения

Предел выносливости алюминиевых

Предел выносливости сварных соединени

Предел выносливости сварных соединений

Предел сварных соединений

Сварные Предел выносливости

Соединение Предел выносливости

Соединение сварное — Выносливость



© 2025 Mash-xxl.info Реклама на сайте