Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Методы и ядер релаксации и ползучести

HO нелинейные ядра ползучести считать функционалами от тензора напряжений. Если фиксирован конкретный процесс нагружения, то можно найти нелинейные ядра ползучести через известные нелинейные ядра релаксации методом последовательных приближений [76].  [c.116]

Здесь Bit, т) — ядро релаксации, т. е. резольвента ядра ползучести Kit, т), умноженного на (т). Ниже в связи с обсуждением вопроса о возможных аппроксимациях мер ползучести теми или иными выражениями будут указаны случаи, когда нахождение ядер релаксации по ядрам ползучести возможно в замкнутом виде. В общем случае ядра релаксации при заданной форме ядер ползучести находятся приближенными методами. На основании  [c.445]


При решении линейных и нелинейных вязкоупругих соотношений особую роль играют методы определения характеристик материала, которые в случае уравнения наследственного типа сводятся к отысканию ядер ползучести и релаксации. Если ядра заданы аналитически, то их параметры определяют путем аппроксимации соответствующих экспериментальных данных. Из-за  [c.33]

Если теперь, пользуясь алгеброй операторов, мы получим формальное решение Задачи (5.9), (5.10) или (5.8), (5.6), то для получения решения задачи линейной теории вязкоупругости для однородных сред будет необходимо расшифровать , встречающиеся в решении функции от операторов. В этом и состоит принцип Вольтерры. Следует иметь, однако ввиду, что в случае ядер релаксации и ползучести неразностного типа умножение операторов не является коммутативной операцией, и поэтому при использовании принципа Вольтерры нужно проследить за методом получения аналитического решения соответствующей задачи теории упругости с тем, чтобы правильно записать произведение упругих постоянных, входящих в ее решение. Основная трудность при решении указанных задач возникает при расшифровке операторов. Для упрощения этой процедуры часто основные операторы выбираются в специальном виде, а экспериментально найденные ядра релаксации и ползучести аппроксимируются ядрами, соответствующими данному специальному виду этих операторов [99]. Лля случая ядер разностного типа часто применяется метод преобразования Лапласа [33]. При расшифровке вязкоупругих операторов большое значение имеет так называемый оператор А.А. Ильюшина др  [c.109]

Одним из основных вопросов в теории вязкоупругости является выбор ядер интегральных уравнений (1.5) и (1.6), нахождение резольвент, а также достоверное определение их параметров. Анализ экспериментальных кривых ползучести показывает, что прн малых t деформация после приложения нагрузки быстро нарастает, так что вначале кривая ползучести практически сливается с осью ординат. Попытки определения фактической скорости ползучести в опыте при о — onst для очень малых t оканчиваются неудачей, так как или скорость ползучести остается больше той, какая может быть измерена применяемыми регистрирующими приборами, или не удается исключить колебательные явления. В связи с изложенным многие исследователи пришли к заключению, что функция ползучести для реального материала должна обязательно иметь слабую (интегрируемую) особенность. Поэтому заметна тенденция использовать для анализа реологических задач ядра интегральных уравнений, имеющие слабую особенность при t =0. Систематизация таких ядер" и их резольвент проведена в работе [95] (табл. 1.1). Отметим, что дробноэкспоненциальная функция Ю. Н. Работнова может использоваться не только как ядро релаксации, но и как ядро ползучести, например, когда материал обнаруживает ограниченную во времени ползучесть. Использование ядра Эа для решения практических задач представляется особенно перспективным в связи со следующими обстоятельствами. Во-первых, на их основе Ю. И. Работновым [138] и М. И. Розовским [149, 150] разработан метод решения задач линейной вязкоупругости с применением принципа Вольтерры. Этими авторами создана алгебра операторов, согласно которой можно производить математические действия умножения, деления и т. д. над выражениями, содержащими интегральные операторы. Дальнейшее развитие алгебры операторов имеется в работах [65, 155]. Во-вторых, Эа — функции протабулированы и изданы отдельной книгой [142]. В-третьих, разработан достаточно эффективный метод определения параметров Эа — функции для реального материала на ЭВМ [126, 163].  [c.21]


К уравнениям теории ползучести с ядрами неразностного вида эти методы, вообще говоря, неприменимы. Поэтому фактическое построение решений этих уравнений встречает значительные трудности. Кроме того, при экспериментальном определении ядер ползучести или релаксации для нестареющих материалов из опытов на простую ползучесть необходимо найти лишь один параметр — длительность времени загружения образца. В то же время для стареющих материалов должны быть определены по крайней мере два параметра. Именно, кроме длительности времени загружения, необходимо знать еще и возраст, при котором образец был загружен.  [c.59]

При применении преобразования Лапласа, так же как и принципа Вольтерры, рассмотренного в 5 гл. 2, большое значение имеет аналитическая форма задания ядер релаксации и ползучести. Обычно экспериментально найденные значения этих ядер задаются дискретным набором значений, соответствующих некоторым фиксированным временам, чаще всего через равные промежутки времени. По этим экспериментальным значениям строят различными методами аналитические аппроксимации ядер в специальной форме. Известны такие аналитические представления Ю.Н. Работнова, М.А. Колтунова, А.П. Вронского, А.Р. Ржани-цына [33, 90] и др. Такая аналитическая аппроксимация часто является источником дополнительных погрешностей, ибо трудно дать аналитическое выражение ядра, хорошо описывающее экспериментально найденное на достаточно большом временном интервале. В следующем параграфе указывается метод, не требующий аналитического описания ядер релаксации и ползучести. Для получения численного решения задачи теории вязкоупругости также нет необходимости производить аналитическую аппроксимацию экспериментальных значений. Пусть, например, временной  [c.318]

В работе Хантера [71] решена двумерная задача о качении жесткого цилиндра с постоянной скоростью по вязкоупругому полупространству, причем рассмотрен случай, когда можно пренебречь инерционными силами. Исследование выполнено в рамках линейной теории, деформации считаются малыми, и граничные условия на поверхности относятся к недеформированному состоянию среды. Подход, примененный в работе, заключался в представлений нормальной составляющей поверхностного смещения в виде интеграла от существующего решения задачи о движении распределенной линейной нагрузки, что привело к сингулярному интегральному уравнению отцосительно искомой функции поверхностного давления (вязкоупругий аналог формулы Буссинеска). Решение задачи осуществлялось путем эквивалентного преобразования интегрального уравнения в уравнение с обычным логарифмическим ядром относительно дифференциального оператора давления. Замкнутый вид решения был получен для материала, физические свойства которого описываются одной функцией ползучести и одним временем ретордации. Однако при обобщении результатов этого исследования и распространении их на более общий случай вязкоупругого тела, у которого ползучесть характеризуется конечным числом времен релаксации, метод при-  [c.401]


Смотреть страницы где упоминается термин Методы и ядер релаксации и ползучести : [c.34]   
Основы прогнозирования механического поведения каучуков и резин (1975) -- [ c.0 ]



ПОИСК



Метод релаксации

Релаксация



© 2025 Mash-xxl.info Реклама на сайте